Spaces:
Runtime error
Runtime error
import os | |
import sys | |
import numpy as np | |
import torch | |
from torch import nn | |
import pickle | |
from scipy.interpolate import interp1d | |
#############Import fast smplx(modified from original ver) | |
local_smplx_path = os.path.abspath(os.path.join(os.path.dirname(__file__), '../..', 'deps/smplx')) | |
sys.path.insert(0, local_smplx_path) | |
import smplx_fast | |
sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), '..'))) | |
from utils.transforms import matrix_to_axis_angle, rotation_6d_to_matrix | |
from utils.constants import pelvis_shift, relaxed_hand_pose, SELECTED_JOINTS24 | |
###########This model is used to predict the initial pose for the optimization########### | |
class JointsToSMPLX(nn.Module): | |
def __init__(self, input_dim, output_dim, hidden_dim, **kwargs): | |
super().__init__() | |
self.layers = nn.Sequential( | |
nn.Linear(input_dim, hidden_dim), | |
nn.BatchNorm1d(hidden_dim), | |
nn.ReLU(), | |
nn.Linear(hidden_dim, hidden_dim), | |
nn.BatchNorm1d(hidden_dim), | |
nn.ReLU(), | |
nn.Linear(hidden_dim, output_dim), | |
) | |
def forward(self, x): | |
return self.layers(x) | |
def get_j2s_model(ckpt_path, | |
input_dim=72, | |
output_dim=132, | |
hidden_dim=64, | |
device='cpu'): | |
model_joints_to_smplx = JointsToSMPLX(input_dim=input_dim, | |
output_dim=output_dim, | |
hidden_dim=hidden_dim | |
) | |
if device == 'cpu': | |
map_location = torch.device('cpu') | |
else: | |
map_location = device | |
model_joints_to_smplx.load_state_dict(torch.load(ckpt_path, map_location=map_location)) | |
model_joints_to_smplx.eval() | |
return model_joints_to_smplx | |
###########This model is used to predict the initial pose for the optimization########### | |
def optimize_smpl(pose_pred, joints, joints_ind, smplx_path, print_loss=True): | |
device = joints.device | |
len = joints.shape[0] | |
smpl_model = smplx_fast.create(smplx_path, | |
model_type='smplx_joint_only', | |
gender='male', ext='npz', | |
num_betas=10, | |
use_pca=False, | |
create_global_orient=True, | |
create_body_pose=True, | |
create_betas=True, | |
create_left_hand_pose=True, | |
create_right_hand_pose=True, | |
create_expression=True, | |
create_jaw_pose=True, | |
create_leye_pose=True, | |
create_reye_pose=True, | |
create_transl=True, | |
batch_size=len, | |
).to(device) | |
smpl_model.eval() | |
joints = joints.reshape(len, -1, 3) + torch.tensor(pelvis_shift).to(device) | |
pose_input = torch.nn.Parameter(pose_pred.detach(), requires_grad=True) | |
transl = torch.nn.Parameter(torch.zeros(pose_pred.shape[0], 3).to(device), requires_grad=True) | |
left_hand = torch.from_numpy(relaxed_hand_pose[:45].reshape(1, -1).repeat(pose_pred.shape[0], axis=0)).to(device) | |
right_hand = torch.from_numpy(relaxed_hand_pose[45:].reshape(1, -1).repeat(pose_pred.shape[0], axis=0)).to(device) | |
optimizer = torch.optim.Adam(params=[pose_input, transl], lr=0.05) | |
loss_fn = nn.MSELoss() | |
vertices_output = None | |
for step in range(120): | |
smpl_output = smpl_model(transl=transl, | |
body_pose=pose_input[:, 3:], | |
global_orient=pose_input[:, :3], | |
return_verts=True, | |
left_hand_pose=left_hand,# @ left_hand_components[:hand_pca], | |
right_hand_pose=right_hand,# @ right_hand_components[:hand_pca], | |
) | |
joints_output = smpl_output[:, joints_ind].reshape(len, -1, 3) | |
loss = loss_fn(joints[:, :], joints_output[:, :]) | |
optimizer.zero_grad() | |
loss.backward() | |
optimizer.step() | |
if print_loss: | |
print(loss.item(), flush=True) | |
return pose_input.detach().cpu().numpy(), \ | |
transl.detach().cpu().numpy(), \ | |
left_hand.detach().cpu().numpy(), \ | |
right_hand.detach().cpu().numpy(), \ | |
vertices_output | |
def joints_to_smpl(model, joints, joints_ind, interp_s, smplx_path, print_loss=True): | |
joints = interpolate_joints(joints, scale=interp_s) | |
input_len = joints.shape[0] | |
joints = joints.reshape(input_len, -1, 3) | |
joints = joints.permute(1, 0, 2) | |
trans_np = joints[0].detach().cpu().numpy() | |
joints = joints - joints[0] | |
joints = joints.permute(1, 0, 2) | |
joints = joints.reshape(input_len, -1) | |
pose_pred = model(joints) | |
pose_pred = pose_pred.reshape(-1, 6) | |
pose_pred = matrix_to_axis_angle(rotation_6d_to_matrix(pose_pred)).reshape(input_len, -1) | |
pose_output, transl, left_hand, right_hand, vertices = optimize_smpl(pose_pred, | |
joints, | |
joints_ind, | |
smplx_path, | |
print_loss=print_loss) | |
transl = trans_np - np.array(pelvis_shift) + transl | |
return pose_output, transl, left_hand, right_hand, vertices | |
def interpolate_joints(joints, scale): | |
if scale == 1: | |
return joints | |
device = joints.device | |
joints = joints.detach().cpu().numpy() | |
in_len = joints.shape[0] | |
out_len = int(in_len * scale) | |
joints = joints.reshape(in_len, -1) | |
x = np.array(range(in_len)) | |
xnew = np.linspace(0, in_len - 1, out_len) | |
f = interp1d(x, joints, axis=0) | |
joints_new = f(xnew) | |
joints_new = torch.from_numpy(joints_new).to(device).float() | |
return joints_new | |
def process_file(file_path, # input dir | |
file_name, # input file | |
save_path, # output dir | |
JointsToSMPLX_model_path, # JointsToSMPLX weight | |
smplx_path, # smplx weight | |
key_list = ['generated_samples', 'original_samples'], | |
joints_ind = SELECTED_JOINTS24, | |
interp_s=2, # 2*10=20 fps | |
): | |
data = np.load(os.path.join(file_path, file_name), allow_pickle=True) | |
model = get_j2s_model(ckpt_path=JointsToSMPLX_model_path, device='cpu') | |
for key in key_list: # original_samples, generated_samples, GT | |
if key in data: | |
joints = torch.tensor(data[key], dtype=torch.float32).reshape(-1, 72) | |
print_loss=False | |
if key == 'generated_samples': | |
print_loss=True | |
pose, transl, left_hand, right_hand, vertices = joints_to_smpl(model, | |
joints, | |
joints_ind, | |
interp_s, | |
smplx_path, | |
print_loss=print_loss) | |
try: | |
data_text = data['text'] | |
except: | |
data_text = None | |
output_data = { | |
'body_pose': pose[:, 3:], | |
'global_orient': pose[:, :3], | |
'transl': transl, | |
'left_hand': left_hand, | |
'right_hand': right_hand, | |
'vertices': vertices, | |
'text': data_text, | |
} | |
if key == 'generated_samples': | |
try: | |
output_data['mask'] = data['mask'] | |
except: | |
output_data['mask'] = None | |
if not os.path.exists(os.path.join(save_path, key)): | |
os.makedirs(os.path.join(save_path, key)) | |
output_file = os.path.join(os.path.join(save_path, key), file_name) | |
with open(output_file, 'wb') as file: | |
pickle.dump(output_data, file) |