Spaces:
Running
Running
#!/usr/bin/env python | |
from __future__ import annotations | |
import argparse | |
import torch | |
import gradio as gr | |
from Scenimefy.options.test_options import TestOptions | |
from Scenimefy.models import create_model | |
from Scenimefy.utils.util import tensor2im | |
from PIL import Image | |
import torchvision.transforms as transforms | |
def parse_args() -> argparse.Namespace: | |
parser = argparse.ArgumentParser() | |
parser.add_argument('--device', type=str, default='cpu') | |
parser.add_argument('--theme', type=str) | |
parser.add_argument('--live', action='store_true') | |
parser.add_argument('--share', action='store_true') | |
parser.add_argument('--port', type=int) | |
parser.add_argument('--disable-queue', | |
dest='enable_queue', | |
action='store_false') | |
parser.add_argument('--allow-flagging', type=str, default='never') | |
parser.add_argument('--allow-screenshot', action='store_true') | |
return parser.parse_args() | |
TITLE = ''' | |
Scene Stylization with <a href="https://github.com/Yuxinn-J/Scenimefy">Scenimefy</a> | |
''' | |
DESCRIPTION = ''' | |
<div align=center> | |
<p> | |
Gradio Demo for Scenimefy. | |
To use it, simply upload your image, or click one of the examples to load them. | |
For best outcomes, please pick a natural landscape image similar to the examples below. | |
Kindly note that our model is trained on 256x256 resolution images, using much higher resolutions might affect its performance. | |
Read more at the links below. | |
</p> | |
</div> | |
''' | |
EXAMPLES = [['0.png'], ['1.jpg'], ['2.png'], ['3.png'], ['4.jpg'], ['5.png'], ['6.jpg'], ['7.png'], ['8.png']] | |
ARTICLE = r""" | |
If Scenimefy is helpful, please help to β the <a href='https://github.com/Yuxinn-J/Scenimefy' target='_blank'>Github Repo</a>. Thank you! | |
π€ **Citation** | |
If our work is useful for your research, please consider citing: | |
```bibtex | |
@inproceedings{jiang2023scenimefy, | |
title={Scenimefy: Learning to Craft Anime Scene via Semi-Supervised Image-to-Image Translation}, | |
author={Jiang, Yuxin and Jiang, Liming and Yang, Shuai and Loy, Chen Change}, | |
booktitle={ICCV}, | |
year={2023} | |
} | |
``` | |
ποΈ **License** | |
This project is licensed under <a rel="license" href="https://github.com/Yuxinn-J/Scenimefy/blob/main/LICENSE.md">S-Lab License 1.0</a>. | |
Redistribution and use for non-commercial purposes should follow this license. | |
""" | |
model = None | |
def initialize(): | |
opt = TestOptions().parse() # get test options | |
# os.environ["CUDA_VISIBLE_DEVICES"] = str(1) | |
# hard-code some parameters for test | |
opt.num_threads = 0 # test code only supports num_threads = 1 | |
opt.batch_size = 1 # test code only supports batch_size = 1 | |
opt.serial_batches = True # disable data shuffling; comment this line if results on randomly chosen images are needed. | |
opt.no_flip = True # no flip; comment this line if results on flipped images are needed. | |
opt.display_id = -1 # no visdom display; the test code saves the results to a HTML file. | |
# dataset = create_dataset(opt) # create a dataset given opt.dataset_mode and other options | |
global model | |
model = create_model(opt) # create a model given opt.model and other options | |
dummy_data = { | |
'A': torch.ones(1, 3, 256, 256), | |
'B': torch.ones(1, 3, 256, 256), | |
'A_paths': 'upload.jpg' | |
} | |
model.data_dependent_initialize(dummy_data) | |
model.setup(opt) # regular setup: load and print networks; create schedulers | |
model.parallelize() | |
return model | |
def __make_power_2(img, base, method=Image.BICUBIC): | |
ow, oh = img.size | |
h = int(round(oh / base) * base) | |
w = int(round(ow / base) * base) | |
if h == oh and w == ow: | |
return img | |
return img.resize((w, h), method) | |
def get_transform(): | |
method=Image.BICUBIC | |
transform_list = [] | |
# if opt.preprocess == 'none': | |
transform_list.append(transforms.Lambda(lambda img: __make_power_2(img, base=4, method=method))) | |
transform_list += [transforms.ToTensor()] | |
transform_list += [transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))] | |
return transforms.Compose(transform_list) | |
def inference(img): | |
transform = get_transform() | |
A = transform(img.convert('RGB')) # A.shape: torch.Size([3, 260, 460]) | |
A = A.unsqueeze(0) # A.shape: torch.Size([1, 3, 260, 460]) | |
upload_data = { | |
'A': A, | |
'B': torch.ones_like(A), | |
'A_paths': 'upload.jpg' | |
} | |
global model | |
model.set_input(upload_data) # unpack data from data loader | |
model.test() # run inference | |
visuals = model.get_current_visuals() | |
return tensor2im(visuals['fake_B']) | |
def main(): | |
args = parse_args() | |
args.device = 'cuda' if torch.cuda.is_available() else 'cpu' | |
print('*** Now using %s.'%(args.device)) | |
global model | |
model = initialize() | |
gr.Interface( | |
inference, | |
gr.Image(type="pil", label='Input'), | |
gr.Image(type="pil", label='Output').style(height=300), | |
theme=args.theme, | |
title=TITLE, | |
description=DESCRIPTION, | |
article=ARTICLE, | |
examples=EXAMPLES, | |
allow_screenshot=args.allow_screenshot, | |
allow_flagging=args.allow_flagging, | |
live=args.live | |
).launch( | |
enable_queue=args.enable_queue, | |
server_port=args.port, | |
share=args.share | |
) | |
if __name__ == '__main__': | |
main() | |