Spaces:
Running
on
Zero
Running
on
Zero
import pycolmap | |
from models.SpaTrackV2.models.predictor import Predictor | |
import yaml | |
import easydict | |
import os | |
import numpy as np | |
import cv2 | |
import torch | |
import torchvision.transforms as T | |
from PIL import Image | |
import io | |
import moviepy.editor as mp | |
from models.SpaTrackV2.utils.visualizer import Visualizer | |
import tqdm | |
from models.SpaTrackV2.models.utils import get_points_on_a_grid | |
import glob | |
from rich import print | |
import argparse | |
import decord | |
from models.SpaTrackV2.models.vggt4track.models.vggt_moe import VGGT4Track | |
from models.SpaTrackV2.models.vggt4track.utils.load_fn import preprocess_image | |
from models.SpaTrackV2.models.vggt4track.utils.pose_enc import pose_encoding_to_extri_intri | |
def parse_args(): | |
parser = argparse.ArgumentParser() | |
parser.add_argument("--track_mode", type=str, default="offline") | |
parser.add_argument("--data_type", type=str, default="RGBD") | |
parser.add_argument("--data_dir", type=str, default="assets/example0") | |
parser.add_argument("--video_name", type=str, default="snowboard") | |
parser.add_argument("--grid_size", type=int, default=10) | |
parser.add_argument("--vo_points", type=int, default=756) | |
parser.add_argument("--fps", type=int, default=1) | |
return parser.parse_args() | |
if __name__ == "__main__": | |
args = parse_args() | |
out_dir = args.data_dir + "/results" | |
# fps | |
fps = int(args.fps) | |
mask_dir = args.data_dir + f"/{args.video_name}.png" | |
vggt4track_model = VGGT4Track.from_pretrained("Yuxihenry/SpatialTrackerV2_Front") | |
vggt4track_model.eval() | |
vggt4track_model = vggt4track_model.to("cuda") | |
if args.data_type == "RGBD": | |
npz_dir = args.data_dir + f"/{args.video_name}.npz" | |
data_npz_load = dict(np.load(npz_dir, allow_pickle=True)) | |
#TODO: tapip format | |
video_tensor = data_npz_load["video"] * 255 | |
video_tensor = torch.from_numpy(video_tensor) | |
video_tensor = video_tensor[::fps] | |
depth_tensor = data_npz_load["depths"] | |
depth_tensor = depth_tensor[::fps] | |
intrs = data_npz_load["intrinsics"] | |
intrs = intrs[::fps] | |
extrs = np.linalg.inv(data_npz_load["extrinsics"]) | |
extrs = extrs[::fps] | |
unc_metric = None | |
elif args.data_type == "RGB": | |
vid_dir = os.path.join(args.data_dir, f"{args.video_name}.mp4") | |
video_reader = decord.VideoReader(vid_dir) | |
video_tensor = torch.from_numpy(video_reader.get_batch(range(len(video_reader))).asnumpy()).permute(0, 3, 1, 2) # Convert to tensor and permute to (N, C, H, W) | |
video_tensor = video_tensor[::fps].float() | |
# process the image tensor | |
video_tensor = preprocess_image(video_tensor)[None] | |
with torch.no_grad(): | |
with torch.cuda.amp.autocast(dtype=torch.bfloat16): | |
# Predict attributes including cameras, depth maps, and point maps. | |
predictions = vggt4track_model(video_tensor.cuda()/255) | |
extrinsic, intrinsic = predictions["poses_pred"], predictions["intrs"] | |
depth_map, depth_conf = predictions["points_map"][..., 2], predictions["unc_metric"] | |
depth_tensor = depth_map.squeeze().cpu().numpy() | |
extrs = np.eye(4)[None].repeat(len(depth_tensor), axis=0) | |
extrs = extrinsic.squeeze().cpu().numpy() | |
intrs = intrinsic.squeeze().cpu().numpy() | |
video_tensor = video_tensor.squeeze() | |
#NOTE: 20% of the depth is not reliable | |
# threshold = depth_conf.squeeze()[0].view(-1).quantile(0.6).item() | |
unc_metric = depth_conf.squeeze().cpu().numpy() > 0.5 | |
data_npz_load = {} | |
if os.path.exists(mask_dir): | |
mask_files = mask_dir | |
mask = cv2.imread(mask_files) | |
mask = cv2.resize(mask, (video_tensor.shape[3], video_tensor.shape[2])) | |
mask = mask.sum(axis=-1)>0 | |
else: | |
mask = np.ones_like(video_tensor[0,0].numpy())>0 | |
# get all data pieces | |
viz = True | |
os.makedirs(out_dir, exist_ok=True) | |
# with open(cfg_dir, "r") as f: | |
# cfg = yaml.load(f, Loader=yaml.FullLoader) | |
# cfg = easydict.EasyDict(cfg) | |
# cfg.out_dir = out_dir | |
# cfg.model.track_num = args.vo_points | |
# print(f"Downloading model from HuggingFace: {cfg.ckpts}") | |
if args.track_mode == "offline": | |
model = Predictor.from_pretrained("Yuxihenry/SpatialTrackerV2-Offline") | |
else: | |
model = Predictor.from_pretrained("Yuxihenry/SpatialTrackerV2-Online") | |
# config the model; the track_num is the number of points in the grid | |
model.spatrack.track_num = args.vo_points | |
model.eval() | |
model.to("cuda") | |
viser = Visualizer(save_dir=out_dir, grayscale=True, | |
fps=10, pad_value=0, tracks_leave_trace=5) | |
grid_size = args.grid_size | |
# get frame H W | |
if video_tensor is None: | |
cap = cv2.VideoCapture(video_path) | |
frame_H = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) | |
frame_W = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)) | |
else: | |
frame_H, frame_W = video_tensor.shape[2:] | |
grid_pts = get_points_on_a_grid(grid_size, (frame_H, frame_W), device="cpu") | |
# Sample mask values at grid points and filter out points where mask=0 | |
if os.path.exists(mask_dir): | |
grid_pts_int = grid_pts[0].long() | |
mask_values = mask[grid_pts_int[...,1], grid_pts_int[...,0]] | |
grid_pts = grid_pts[:, mask_values] | |
query_xyt = torch.cat([torch.zeros_like(grid_pts[:, :, :1]), grid_pts], dim=2)[0].numpy() | |
# Run model inference | |
with torch.amp.autocast(device_type="cuda", dtype=torch.bfloat16): | |
( | |
c2w_traj, intrs, point_map, conf_depth, | |
track3d_pred, track2d_pred, vis_pred, conf_pred, video | |
) = model.forward(video_tensor, depth=depth_tensor, | |
intrs=intrs, extrs=extrs, | |
queries=query_xyt, | |
fps=1, full_point=False, iters_track=4, | |
query_no_BA=True, fixed_cam=False, stage=1, unc_metric=unc_metric, | |
support_frame=len(video_tensor)-1, replace_ratio=0.2) | |
# resize the results to avoid too large I/O Burden | |
# depth and image, the maximum side is 336 | |
max_size = 336 | |
h, w = video.shape[2:] | |
scale = min(max_size / h, max_size / w) | |
if scale < 1: | |
new_h, new_w = int(h * scale), int(w * scale) | |
video = T.Resize((new_h, new_w))(video) | |
video_tensor = T.Resize((new_h, new_w))(video_tensor) | |
point_map = T.Resize((new_h, new_w))(point_map) | |
conf_depth = T.Resize((new_h, new_w))(conf_depth) | |
track2d_pred[...,:2] = track2d_pred[...,:2] * scale | |
intrs[:,:2,:] = intrs[:,:2,:] * scale | |
if depth_tensor is not None: | |
if isinstance(depth_tensor, torch.Tensor): | |
depth_tensor = T.Resize((new_h, new_w))(depth_tensor) | |
else: | |
depth_tensor = T.Resize((new_h, new_w))(torch.from_numpy(depth_tensor)) | |
if viz: | |
viser.visualize(video=video[None], | |
tracks=track2d_pred[None][...,:2], | |
visibility=vis_pred[None],filename="test") | |
# save as the tapip3d format | |
data_npz_load["coords"] = (torch.einsum("tij,tnj->tni", c2w_traj[:,:3,:3], track3d_pred[:,:,:3].cpu()) + c2w_traj[:,:3,3][:,None,:]).numpy() | |
data_npz_load["extrinsics"] = torch.inverse(c2w_traj).cpu().numpy() | |
data_npz_load["intrinsics"] = intrs.cpu().numpy() | |
depth_save = point_map[:,2,...] | |
depth_save[conf_depth<0.5] = 0 | |
data_npz_load["depths"] = depth_save.cpu().numpy() | |
data_npz_load["video"] = (video_tensor).cpu().numpy()/255 | |
data_npz_load["visibs"] = vis_pred.cpu().numpy() | |
data_npz_load["unc_metric"] = conf_depth.cpu().numpy() | |
np.savez(os.path.join(out_dir, f'result.npz'), **data_npz_load) | |
print(f"Results saved to {out_dir}.\nTo visualize them with tapip3d, run: [bold yellow]python tapip3d_viz.py {out_dir}/result.npz[/bold yellow]") | |