Upload 3 files
Browse files- data_utils.py +154 -0
- models.py +351 -0
- modules.py +342 -0
data_utils.py
ADDED
@@ -0,0 +1,154 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import time
|
2 |
+
import os
|
3 |
+
import random
|
4 |
+
import numpy as np
|
5 |
+
import torch
|
6 |
+
import torch.utils.data
|
7 |
+
|
8 |
+
import commons
|
9 |
+
from mel_processing import spectrogram_torch, spec_to_mel_torch
|
10 |
+
from utils import load_wav_to_torch, load_filepaths_and_text, transform
|
11 |
+
|
12 |
+
# import h5py
|
13 |
+
|
14 |
+
|
15 |
+
"""Multi speaker version"""
|
16 |
+
|
17 |
+
|
18 |
+
class TextAudioSpeakerLoader(torch.utils.data.Dataset):
|
19 |
+
"""
|
20 |
+
1) loads audio, speaker_id, text pairs
|
21 |
+
2) normalizes text and converts them to sequences of integers
|
22 |
+
3) computes spectrograms from audio files.
|
23 |
+
"""
|
24 |
+
|
25 |
+
def __init__(self, audiopaths, hparams):
|
26 |
+
self.audiopaths = load_filepaths_and_text(audiopaths)
|
27 |
+
self.max_wav_value = hparams.data.max_wav_value
|
28 |
+
self.sampling_rate = hparams.data.sampling_rate
|
29 |
+
self.filter_length = hparams.data.filter_length
|
30 |
+
self.hop_length = hparams.data.hop_length
|
31 |
+
self.win_length = hparams.data.win_length
|
32 |
+
self.sampling_rate = hparams.data.sampling_rate
|
33 |
+
self.use_sr = hparams.train.use_sr
|
34 |
+
self.spec_len = hparams.train.max_speclen
|
35 |
+
self.spk_map = hparams.spk
|
36 |
+
|
37 |
+
random.seed(1234)
|
38 |
+
random.shuffle(self.audiopaths)
|
39 |
+
|
40 |
+
def get_audio(self, filename):
|
41 |
+
filename = filename.replace("\\", "/")
|
42 |
+
audio, sampling_rate = load_wav_to_torch(filename)
|
43 |
+
if sampling_rate != self.sampling_rate:
|
44 |
+
raise ValueError("{} SR doesn't match target {} SR".format(
|
45 |
+
sampling_rate, self.sampling_rate))
|
46 |
+
audio_norm = audio / self.max_wav_value
|
47 |
+
audio_norm = audio_norm.unsqueeze(0)
|
48 |
+
spec_filename = filename.replace(".wav", ".spec.pt")
|
49 |
+
if os.path.exists(spec_filename):
|
50 |
+
spec = torch.load(spec_filename)
|
51 |
+
else:
|
52 |
+
spec = spectrogram_torch(audio_norm, self.filter_length,
|
53 |
+
self.sampling_rate, self.hop_length, self.win_length,
|
54 |
+
center=False)
|
55 |
+
spec = torch.squeeze(spec, 0)
|
56 |
+
torch.save(spec, spec_filename)
|
57 |
+
|
58 |
+
spk = filename.split("/")[-2]
|
59 |
+
spk = torch.LongTensor([self.spk_map[spk]])
|
60 |
+
|
61 |
+
c = torch.load(filename + ".soft.pt").squeeze(0)
|
62 |
+
c = torch.repeat_interleave(c, repeats=2, dim=1)
|
63 |
+
|
64 |
+
f0 = np.load(filename + ".f0.npy")
|
65 |
+
f0 = torch.FloatTensor(f0)
|
66 |
+
lmin = min(c.size(-1), spec.size(-1), f0.shape[0])
|
67 |
+
assert abs(c.size(-1) - spec.size(-1)) < 4, (c.size(-1), spec.size(-1), f0.shape, filename)
|
68 |
+
assert abs(lmin - spec.size(-1)) < 4, (c.size(-1), spec.size(-1), f0.shape)
|
69 |
+
assert abs(lmin - c.size(-1)) < 4, (c.size(-1), spec.size(-1), f0.shape)
|
70 |
+
spec, c, f0 = spec[:, :lmin], c[:, :lmin], f0[:lmin]
|
71 |
+
audio_norm = audio_norm[:, :lmin * self.hop_length]
|
72 |
+
_spec, _c, _audio_norm, _f0 = spec, c, audio_norm, f0
|
73 |
+
while spec.size(-1) < self.spec_len:
|
74 |
+
spec = torch.cat((spec, _spec), -1)
|
75 |
+
c = torch.cat((c, _c), -1)
|
76 |
+
f0 = torch.cat((f0, _f0), -1)
|
77 |
+
audio_norm = torch.cat((audio_norm, _audio_norm), -1)
|
78 |
+
start = random.randint(0, spec.size(-1) - self.spec_len)
|
79 |
+
end = start + self.spec_len
|
80 |
+
spec = spec[:, start:end]
|
81 |
+
c = c[:, start:end]
|
82 |
+
f0 = f0[start:end]
|
83 |
+
audio_norm = audio_norm[:, start * self.hop_length:end * self.hop_length]
|
84 |
+
|
85 |
+
return c, f0, spec, audio_norm, spk
|
86 |
+
|
87 |
+
def __getitem__(self, index):
|
88 |
+
return self.get_audio(self.audiopaths[index][0])
|
89 |
+
|
90 |
+
def __len__(self):
|
91 |
+
return len(self.audiopaths)
|
92 |
+
|
93 |
+
|
94 |
+
class EvalDataLoader(torch.utils.data.Dataset):
|
95 |
+
"""
|
96 |
+
1) loads audio, speaker_id, text pairs
|
97 |
+
2) normalizes text and converts them to sequences of integers
|
98 |
+
3) computes spectrograms from audio files.
|
99 |
+
"""
|
100 |
+
|
101 |
+
def __init__(self, audiopaths, hparams):
|
102 |
+
self.audiopaths = load_filepaths_and_text(audiopaths)
|
103 |
+
self.max_wav_value = hparams.data.max_wav_value
|
104 |
+
self.sampling_rate = hparams.data.sampling_rate
|
105 |
+
self.filter_length = hparams.data.filter_length
|
106 |
+
self.hop_length = hparams.data.hop_length
|
107 |
+
self.win_length = hparams.data.win_length
|
108 |
+
self.sampling_rate = hparams.data.sampling_rate
|
109 |
+
self.use_sr = hparams.train.use_sr
|
110 |
+
self.audiopaths = self.audiopaths[:5]
|
111 |
+
self.spk_map = hparams.spk
|
112 |
+
|
113 |
+
|
114 |
+
def get_audio(self, filename):
|
115 |
+
filename = filename.replace("\\", "/")
|
116 |
+
audio, sampling_rate = load_wav_to_torch(filename)
|
117 |
+
if sampling_rate != self.sampling_rate:
|
118 |
+
raise ValueError("{} SR doesn't match target {} SR".format(
|
119 |
+
sampling_rate, self.sampling_rate))
|
120 |
+
audio_norm = audio / self.max_wav_value
|
121 |
+
audio_norm = audio_norm.unsqueeze(0)
|
122 |
+
spec_filename = filename.replace(".wav", ".spec.pt")
|
123 |
+
if os.path.exists(spec_filename):
|
124 |
+
spec = torch.load(spec_filename)
|
125 |
+
else:
|
126 |
+
spec = spectrogram_torch(audio_norm, self.filter_length,
|
127 |
+
self.sampling_rate, self.hop_length, self.win_length,
|
128 |
+
center=False)
|
129 |
+
spec = torch.squeeze(spec, 0)
|
130 |
+
torch.save(spec, spec_filename)
|
131 |
+
|
132 |
+
spk = filename.split("/")[-2]
|
133 |
+
spk = torch.LongTensor([self.spk_map[spk]])
|
134 |
+
|
135 |
+
c = torch.load(filename + ".soft.pt").squeeze(0)
|
136 |
+
|
137 |
+
c = torch.repeat_interleave(c, repeats=2, dim=1)
|
138 |
+
|
139 |
+
f0 = np.load(filename + ".f0.npy")
|
140 |
+
f0 = torch.FloatTensor(f0)
|
141 |
+
lmin = min(c.size(-1), spec.size(-1), f0.shape[0])
|
142 |
+
assert abs(c.size(-1) - spec.size(-1)) < 4, (c.size(-1), spec.size(-1), f0.shape)
|
143 |
+
assert abs(f0.shape[0] - spec.shape[-1]) < 4, (c.size(-1), spec.size(-1), f0.shape)
|
144 |
+
spec, c, f0 = spec[:, :lmin], c[:, :lmin], f0[:lmin]
|
145 |
+
audio_norm = audio_norm[:, :lmin * self.hop_length]
|
146 |
+
|
147 |
+
return c, f0, spec, audio_norm, spk
|
148 |
+
|
149 |
+
def __getitem__(self, index):
|
150 |
+
return self.get_audio(self.audiopaths[index][0])
|
151 |
+
|
152 |
+
def __len__(self):
|
153 |
+
return len(self.audiopaths)
|
154 |
+
|
models.py
ADDED
@@ -0,0 +1,351 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import copy
|
2 |
+
import math
|
3 |
+
import torch
|
4 |
+
from torch import nn
|
5 |
+
from torch.nn import functional as F
|
6 |
+
|
7 |
+
import attentions
|
8 |
+
import commons
|
9 |
+
import modules
|
10 |
+
|
11 |
+
from torch.nn import Conv1d, ConvTranspose1d, AvgPool1d, Conv2d
|
12 |
+
from torch.nn.utils import weight_norm, remove_weight_norm, spectral_norm
|
13 |
+
from commons import init_weights, get_padding
|
14 |
+
from vdecoder.hifigan.models import Generator
|
15 |
+
from utils import f0_to_coarse
|
16 |
+
|
17 |
+
class ResidualCouplingBlock(nn.Module):
|
18 |
+
def __init__(self,
|
19 |
+
channels,
|
20 |
+
hidden_channels,
|
21 |
+
kernel_size,
|
22 |
+
dilation_rate,
|
23 |
+
n_layers,
|
24 |
+
n_flows=4,
|
25 |
+
gin_channels=0):
|
26 |
+
super().__init__()
|
27 |
+
self.channels = channels
|
28 |
+
self.hidden_channels = hidden_channels
|
29 |
+
self.kernel_size = kernel_size
|
30 |
+
self.dilation_rate = dilation_rate
|
31 |
+
self.n_layers = n_layers
|
32 |
+
self.n_flows = n_flows
|
33 |
+
self.gin_channels = gin_channels
|
34 |
+
|
35 |
+
self.flows = nn.ModuleList()
|
36 |
+
for i in range(n_flows):
|
37 |
+
self.flows.append(modules.ResidualCouplingLayer(channels, hidden_channels, kernel_size, dilation_rate, n_layers, gin_channels=gin_channels, mean_only=True))
|
38 |
+
self.flows.append(modules.Flip())
|
39 |
+
|
40 |
+
def forward(self, x, x_mask, g=None, reverse=False):
|
41 |
+
if not reverse:
|
42 |
+
for flow in self.flows:
|
43 |
+
x, _ = flow(x, x_mask, g=g, reverse=reverse)
|
44 |
+
else:
|
45 |
+
for flow in reversed(self.flows):
|
46 |
+
x = flow(x, x_mask, g=g, reverse=reverse)
|
47 |
+
return x
|
48 |
+
|
49 |
+
|
50 |
+
class Encoder(nn.Module):
|
51 |
+
def __init__(self,
|
52 |
+
in_channels,
|
53 |
+
out_channels,
|
54 |
+
hidden_channels,
|
55 |
+
kernel_size,
|
56 |
+
dilation_rate,
|
57 |
+
n_layers,
|
58 |
+
gin_channels=0):
|
59 |
+
super().__init__()
|
60 |
+
self.in_channels = in_channels
|
61 |
+
self.out_channels = out_channels
|
62 |
+
self.hidden_channels = hidden_channels
|
63 |
+
self.kernel_size = kernel_size
|
64 |
+
self.dilation_rate = dilation_rate
|
65 |
+
self.n_layers = n_layers
|
66 |
+
self.gin_channels = gin_channels
|
67 |
+
|
68 |
+
self.pre = nn.Conv1d(in_channels, hidden_channels, 1)
|
69 |
+
self.enc = modules.WN(hidden_channels, kernel_size, dilation_rate, n_layers, gin_channels=gin_channels)
|
70 |
+
self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1)
|
71 |
+
|
72 |
+
def forward(self, x, x_lengths, g=None):
|
73 |
+
# print(x.shape,x_lengths.shape)
|
74 |
+
x_mask = torch.unsqueeze(commons.sequence_mask(x_lengths, x.size(2)), 1).to(x.dtype)
|
75 |
+
x = self.pre(x) * x_mask
|
76 |
+
x = self.enc(x, x_mask, g=g)
|
77 |
+
stats = self.proj(x) * x_mask
|
78 |
+
m, logs = torch.split(stats, self.out_channels, dim=1)
|
79 |
+
z = (m + torch.randn_like(m) * torch.exp(logs)) * x_mask
|
80 |
+
return z, m, logs, x_mask
|
81 |
+
|
82 |
+
|
83 |
+
class TextEncoder(nn.Module):
|
84 |
+
def __init__(self,
|
85 |
+
in_channels,
|
86 |
+
out_channels,
|
87 |
+
hidden_channels,
|
88 |
+
kernel_size,
|
89 |
+
dilation_rate,
|
90 |
+
n_layers,
|
91 |
+
gin_channels=0,
|
92 |
+
filter_channels=None,
|
93 |
+
n_heads=None,
|
94 |
+
p_dropout=None):
|
95 |
+
super().__init__()
|
96 |
+
self.in_channels = in_channels
|
97 |
+
self.out_channels = out_channels
|
98 |
+
self.hidden_channels = hidden_channels
|
99 |
+
self.kernel_size = kernel_size
|
100 |
+
self.dilation_rate = dilation_rate
|
101 |
+
self.n_layers = n_layers
|
102 |
+
self.gin_channels = gin_channels
|
103 |
+
self.pre = nn.Conv1d(in_channels, hidden_channels, 1)
|
104 |
+
self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1)
|
105 |
+
self.f0_emb = nn.Embedding(256, hidden_channels)
|
106 |
+
|
107 |
+
self.enc_ = attentions.Encoder(
|
108 |
+
hidden_channels,
|
109 |
+
filter_channels,
|
110 |
+
n_heads,
|
111 |
+
n_layers,
|
112 |
+
kernel_size,
|
113 |
+
p_dropout)
|
114 |
+
|
115 |
+
def forward(self, x, x_lengths, f0=None):
|
116 |
+
x_mask = torch.unsqueeze(commons.sequence_mask(x_lengths, x.size(2)), 1).to(x.dtype)
|
117 |
+
x = self.pre(x) * x_mask
|
118 |
+
x = x + self.f0_emb(f0).transpose(1,2)
|
119 |
+
x = self.enc_(x * x_mask, x_mask)
|
120 |
+
stats = self.proj(x) * x_mask
|
121 |
+
m, logs = torch.split(stats, self.out_channels, dim=1)
|
122 |
+
z = (m + torch.randn_like(m) * torch.exp(logs)) * x_mask
|
123 |
+
|
124 |
+
return z, m, logs, x_mask
|
125 |
+
|
126 |
+
|
127 |
+
|
128 |
+
class DiscriminatorP(torch.nn.Module):
|
129 |
+
def __init__(self, period, kernel_size=5, stride=3, use_spectral_norm=False):
|
130 |
+
super(DiscriminatorP, self).__init__()
|
131 |
+
self.period = period
|
132 |
+
self.use_spectral_norm = use_spectral_norm
|
133 |
+
norm_f = weight_norm if use_spectral_norm == False else spectral_norm
|
134 |
+
self.convs = nn.ModuleList([
|
135 |
+
norm_f(Conv2d(1, 32, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))),
|
136 |
+
norm_f(Conv2d(32, 128, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))),
|
137 |
+
norm_f(Conv2d(128, 512, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))),
|
138 |
+
norm_f(Conv2d(512, 1024, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))),
|
139 |
+
norm_f(Conv2d(1024, 1024, (kernel_size, 1), 1, padding=(get_padding(kernel_size, 1), 0))),
|
140 |
+
])
|
141 |
+
self.conv_post = norm_f(Conv2d(1024, 1, (3, 1), 1, padding=(1, 0)))
|
142 |
+
|
143 |
+
def forward(self, x):
|
144 |
+
fmap = []
|
145 |
+
|
146 |
+
# 1d to 2d
|
147 |
+
b, c, t = x.shape
|
148 |
+
if t % self.period != 0: # pad first
|
149 |
+
n_pad = self.period - (t % self.period)
|
150 |
+
x = F.pad(x, (0, n_pad), "reflect")
|
151 |
+
t = t + n_pad
|
152 |
+
x = x.view(b, c, t // self.period, self.period)
|
153 |
+
|
154 |
+
for l in self.convs:
|
155 |
+
x = l(x)
|
156 |
+
x = F.leaky_relu(x, modules.LRELU_SLOPE)
|
157 |
+
fmap.append(x)
|
158 |
+
x = self.conv_post(x)
|
159 |
+
fmap.append(x)
|
160 |
+
x = torch.flatten(x, 1, -1)
|
161 |
+
|
162 |
+
return x, fmap
|
163 |
+
|
164 |
+
|
165 |
+
class DiscriminatorS(torch.nn.Module):
|
166 |
+
def __init__(self, use_spectral_norm=False):
|
167 |
+
super(DiscriminatorS, self).__init__()
|
168 |
+
norm_f = weight_norm if use_spectral_norm == False else spectral_norm
|
169 |
+
self.convs = nn.ModuleList([
|
170 |
+
norm_f(Conv1d(1, 16, 15, 1, padding=7)),
|
171 |
+
norm_f(Conv1d(16, 64, 41, 4, groups=4, padding=20)),
|
172 |
+
norm_f(Conv1d(64, 256, 41, 4, groups=16, padding=20)),
|
173 |
+
norm_f(Conv1d(256, 1024, 41, 4, groups=64, padding=20)),
|
174 |
+
norm_f(Conv1d(1024, 1024, 41, 4, groups=256, padding=20)),
|
175 |
+
norm_f(Conv1d(1024, 1024, 5, 1, padding=2)),
|
176 |
+
])
|
177 |
+
self.conv_post = norm_f(Conv1d(1024, 1, 3, 1, padding=1))
|
178 |
+
|
179 |
+
def forward(self, x):
|
180 |
+
fmap = []
|
181 |
+
|
182 |
+
for l in self.convs:
|
183 |
+
x = l(x)
|
184 |
+
x = F.leaky_relu(x, modules.LRELU_SLOPE)
|
185 |
+
fmap.append(x)
|
186 |
+
x = self.conv_post(x)
|
187 |
+
fmap.append(x)
|
188 |
+
x = torch.flatten(x, 1, -1)
|
189 |
+
|
190 |
+
return x, fmap
|
191 |
+
|
192 |
+
|
193 |
+
class MultiPeriodDiscriminator(torch.nn.Module):
|
194 |
+
def __init__(self, use_spectral_norm=False):
|
195 |
+
super(MultiPeriodDiscriminator, self).__init__()
|
196 |
+
periods = [2,3,5,7,11]
|
197 |
+
|
198 |
+
discs = [DiscriminatorS(use_spectral_norm=use_spectral_norm)]
|
199 |
+
discs = discs + [DiscriminatorP(i, use_spectral_norm=use_spectral_norm) for i in periods]
|
200 |
+
self.discriminators = nn.ModuleList(discs)
|
201 |
+
|
202 |
+
def forward(self, y, y_hat):
|
203 |
+
y_d_rs = []
|
204 |
+
y_d_gs = []
|
205 |
+
fmap_rs = []
|
206 |
+
fmap_gs = []
|
207 |
+
for i, d in enumerate(self.discriminators):
|
208 |
+
y_d_r, fmap_r = d(y)
|
209 |
+
y_d_g, fmap_g = d(y_hat)
|
210 |
+
y_d_rs.append(y_d_r)
|
211 |
+
y_d_gs.append(y_d_g)
|
212 |
+
fmap_rs.append(fmap_r)
|
213 |
+
fmap_gs.append(fmap_g)
|
214 |
+
|
215 |
+
return y_d_rs, y_d_gs, fmap_rs, fmap_gs
|
216 |
+
|
217 |
+
|
218 |
+
class SpeakerEncoder(torch.nn.Module):
|
219 |
+
def __init__(self, mel_n_channels=80, model_num_layers=3, model_hidden_size=256, model_embedding_size=256):
|
220 |
+
super(SpeakerEncoder, self).__init__()
|
221 |
+
self.lstm = nn.LSTM(mel_n_channels, model_hidden_size, model_num_layers, batch_first=True)
|
222 |
+
self.linear = nn.Linear(model_hidden_size, model_embedding_size)
|
223 |
+
self.relu = nn.ReLU()
|
224 |
+
|
225 |
+
def forward(self, mels):
|
226 |
+
self.lstm.flatten_parameters()
|
227 |
+
_, (hidden, _) = self.lstm(mels)
|
228 |
+
embeds_raw = self.relu(self.linear(hidden[-1]))
|
229 |
+
return embeds_raw / torch.norm(embeds_raw, dim=1, keepdim=True)
|
230 |
+
|
231 |
+
def compute_partial_slices(self, total_frames, partial_frames, partial_hop):
|
232 |
+
mel_slices = []
|
233 |
+
for i in range(0, total_frames-partial_frames, partial_hop):
|
234 |
+
mel_range = torch.arange(i, i+partial_frames)
|
235 |
+
mel_slices.append(mel_range)
|
236 |
+
|
237 |
+
return mel_slices
|
238 |
+
|
239 |
+
def embed_utterance(self, mel, partial_frames=128, partial_hop=64):
|
240 |
+
mel_len = mel.size(1)
|
241 |
+
last_mel = mel[:,-partial_frames:]
|
242 |
+
|
243 |
+
if mel_len > partial_frames:
|
244 |
+
mel_slices = self.compute_partial_slices(mel_len, partial_frames, partial_hop)
|
245 |
+
mels = list(mel[:,s] for s in mel_slices)
|
246 |
+
mels.append(last_mel)
|
247 |
+
mels = torch.stack(tuple(mels), 0).squeeze(1)
|
248 |
+
|
249 |
+
with torch.no_grad():
|
250 |
+
partial_embeds = self(mels)
|
251 |
+
embed = torch.mean(partial_embeds, axis=0).unsqueeze(0)
|
252 |
+
#embed = embed / torch.linalg.norm(embed, 2)
|
253 |
+
else:
|
254 |
+
with torch.no_grad():
|
255 |
+
embed = self(last_mel)
|
256 |
+
|
257 |
+
return embed
|
258 |
+
|
259 |
+
|
260 |
+
class SynthesizerTrn(nn.Module):
|
261 |
+
"""
|
262 |
+
Synthesizer for Training
|
263 |
+
"""
|
264 |
+
|
265 |
+
def __init__(self,
|
266 |
+
spec_channels,
|
267 |
+
segment_size,
|
268 |
+
inter_channels,
|
269 |
+
hidden_channels,
|
270 |
+
filter_channels,
|
271 |
+
n_heads,
|
272 |
+
n_layers,
|
273 |
+
kernel_size,
|
274 |
+
p_dropout,
|
275 |
+
resblock,
|
276 |
+
resblock_kernel_sizes,
|
277 |
+
resblock_dilation_sizes,
|
278 |
+
upsample_rates,
|
279 |
+
upsample_initial_channel,
|
280 |
+
upsample_kernel_sizes,
|
281 |
+
gin_channels,
|
282 |
+
ssl_dim,
|
283 |
+
n_speakers,
|
284 |
+
**kwargs):
|
285 |
+
|
286 |
+
super().__init__()
|
287 |
+
self.spec_channels = spec_channels
|
288 |
+
self.inter_channels = inter_channels
|
289 |
+
self.hidden_channels = hidden_channels
|
290 |
+
self.filter_channels = filter_channels
|
291 |
+
self.n_heads = n_heads
|
292 |
+
self.n_layers = n_layers
|
293 |
+
self.kernel_size = kernel_size
|
294 |
+
self.p_dropout = p_dropout
|
295 |
+
self.resblock = resblock
|
296 |
+
self.resblock_kernel_sizes = resblock_kernel_sizes
|
297 |
+
self.resblock_dilation_sizes = resblock_dilation_sizes
|
298 |
+
self.upsample_rates = upsample_rates
|
299 |
+
self.upsample_initial_channel = upsample_initial_channel
|
300 |
+
self.upsample_kernel_sizes = upsample_kernel_sizes
|
301 |
+
self.segment_size = segment_size
|
302 |
+
self.gin_channels = gin_channels
|
303 |
+
self.ssl_dim = ssl_dim
|
304 |
+
self.emb_g = nn.Embedding(n_speakers, gin_channels)
|
305 |
+
|
306 |
+
self.enc_p_ = TextEncoder(ssl_dim, inter_channels, hidden_channels, 5, 1, 16,0, filter_channels, n_heads, p_dropout)
|
307 |
+
hps = {
|
308 |
+
"sampling_rate": 32000,
|
309 |
+
"inter_channels": 192,
|
310 |
+
"resblock": "1",
|
311 |
+
"resblock_kernel_sizes": [3, 7, 11],
|
312 |
+
"resblock_dilation_sizes": [[1, 3, 5], [1, 3, 5], [1, 3, 5]],
|
313 |
+
"upsample_rates": [10, 8, 2, 2],
|
314 |
+
"upsample_initial_channel": 512,
|
315 |
+
"upsample_kernel_sizes": [16, 16, 4, 4],
|
316 |
+
"gin_channels": 256,
|
317 |
+
}
|
318 |
+
self.dec = Generator(h=hps)
|
319 |
+
self.enc_q = Encoder(spec_channels, inter_channels, hidden_channels, 5, 1, 16, gin_channels=gin_channels)
|
320 |
+
self.flow = ResidualCouplingBlock(inter_channels, hidden_channels, 5, 1, 4, gin_channels=gin_channels)
|
321 |
+
|
322 |
+
def forward(self, c, f0, spec, g=None, mel=None, c_lengths=None, spec_lengths=None):
|
323 |
+
if c_lengths == None:
|
324 |
+
c_lengths = (torch.ones(c.size(0)) * c.size(-1)).to(c.device)
|
325 |
+
if spec_lengths == None:
|
326 |
+
spec_lengths = (torch.ones(spec.size(0)) * spec.size(-1)).to(spec.device)
|
327 |
+
|
328 |
+
g = self.emb_g(g).transpose(1,2)
|
329 |
+
|
330 |
+
z_ptemp, m_p, logs_p, _ = self.enc_p_(c, c_lengths, f0=f0_to_coarse(f0))
|
331 |
+
z, m_q, logs_q, spec_mask = self.enc_q(spec, spec_lengths, g=g)
|
332 |
+
|
333 |
+
z_p = self.flow(z, spec_mask, g=g)
|
334 |
+
z_slice, pitch_slice, ids_slice = commons.rand_slice_segments_with_pitch(z, f0, spec_lengths, self.segment_size)
|
335 |
+
|
336 |
+
# o = self.dec(z_slice, g=g)
|
337 |
+
o = self.dec(z_slice, g=g, f0=pitch_slice)
|
338 |
+
|
339 |
+
return o, ids_slice, spec_mask, (z, z_p, m_p, logs_p, m_q, logs_q)
|
340 |
+
|
341 |
+
def infer(self, c, f0, g=None, mel=None, c_lengths=None):
|
342 |
+
if c_lengths == None:
|
343 |
+
c_lengths = (torch.ones(c.size(0)) * c.size(-1)).to(c.device)
|
344 |
+
g = self.emb_g(g).transpose(1,2)
|
345 |
+
|
346 |
+
z_p, m_p, logs_p, c_mask = self.enc_p_(c, c_lengths, f0=f0_to_coarse(f0))
|
347 |
+
z = self.flow(z_p, c_mask, g=g, reverse=True)
|
348 |
+
|
349 |
+
o = self.dec(z * c_mask, g=g, f0=f0)
|
350 |
+
|
351 |
+
return o
|
modules.py
ADDED
@@ -0,0 +1,342 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import copy
|
2 |
+
import math
|
3 |
+
import numpy as np
|
4 |
+
import scipy
|
5 |
+
import torch
|
6 |
+
from torch import nn
|
7 |
+
from torch.nn import functional as F
|
8 |
+
|
9 |
+
from torch.nn import Conv1d, ConvTranspose1d, AvgPool1d, Conv2d
|
10 |
+
from torch.nn.utils import weight_norm, remove_weight_norm
|
11 |
+
|
12 |
+
import commons
|
13 |
+
from commons import init_weights, get_padding
|
14 |
+
|
15 |
+
|
16 |
+
LRELU_SLOPE = 0.1
|
17 |
+
|
18 |
+
|
19 |
+
class LayerNorm(nn.Module):
|
20 |
+
def __init__(self, channels, eps=1e-5):
|
21 |
+
super().__init__()
|
22 |
+
self.channels = channels
|
23 |
+
self.eps = eps
|
24 |
+
|
25 |
+
self.gamma = nn.Parameter(torch.ones(channels))
|
26 |
+
self.beta = nn.Parameter(torch.zeros(channels))
|
27 |
+
|
28 |
+
def forward(self, x):
|
29 |
+
x = x.transpose(1, -1)
|
30 |
+
x = F.layer_norm(x, (self.channels,), self.gamma, self.beta, self.eps)
|
31 |
+
return x.transpose(1, -1)
|
32 |
+
|
33 |
+
|
34 |
+
class ConvReluNorm(nn.Module):
|
35 |
+
def __init__(self, in_channels, hidden_channels, out_channels, kernel_size, n_layers, p_dropout):
|
36 |
+
super().__init__()
|
37 |
+
self.in_channels = in_channels
|
38 |
+
self.hidden_channels = hidden_channels
|
39 |
+
self.out_channels = out_channels
|
40 |
+
self.kernel_size = kernel_size
|
41 |
+
self.n_layers = n_layers
|
42 |
+
self.p_dropout = p_dropout
|
43 |
+
assert n_layers > 1, "Number of layers should be larger than 0."
|
44 |
+
|
45 |
+
self.conv_layers = nn.ModuleList()
|
46 |
+
self.norm_layers = nn.ModuleList()
|
47 |
+
self.conv_layers.append(nn.Conv1d(in_channels, hidden_channels, kernel_size, padding=kernel_size//2))
|
48 |
+
self.norm_layers.append(LayerNorm(hidden_channels))
|
49 |
+
self.relu_drop = nn.Sequential(
|
50 |
+
nn.ReLU(),
|
51 |
+
nn.Dropout(p_dropout))
|
52 |
+
for _ in range(n_layers-1):
|
53 |
+
self.conv_layers.append(nn.Conv1d(hidden_channels, hidden_channels, kernel_size, padding=kernel_size//2))
|
54 |
+
self.norm_layers.append(LayerNorm(hidden_channels))
|
55 |
+
self.proj = nn.Conv1d(hidden_channels, out_channels, 1)
|
56 |
+
self.proj.weight.data.zero_()
|
57 |
+
self.proj.bias.data.zero_()
|
58 |
+
|
59 |
+
def forward(self, x, x_mask):
|
60 |
+
x_org = x
|
61 |
+
for i in range(self.n_layers):
|
62 |
+
x = self.conv_layers[i](x * x_mask)
|
63 |
+
x = self.norm_layers[i](x)
|
64 |
+
x = self.relu_drop(x)
|
65 |
+
x = x_org + self.proj(x)
|
66 |
+
return x * x_mask
|
67 |
+
|
68 |
+
|
69 |
+
class DDSConv(nn.Module):
|
70 |
+
"""
|
71 |
+
Dialted and Depth-Separable Convolution
|
72 |
+
"""
|
73 |
+
def __init__(self, channels, kernel_size, n_layers, p_dropout=0.):
|
74 |
+
super().__init__()
|
75 |
+
self.channels = channels
|
76 |
+
self.kernel_size = kernel_size
|
77 |
+
self.n_layers = n_layers
|
78 |
+
self.p_dropout = p_dropout
|
79 |
+
|
80 |
+
self.drop = nn.Dropout(p_dropout)
|
81 |
+
self.convs_sep = nn.ModuleList()
|
82 |
+
self.convs_1x1 = nn.ModuleList()
|
83 |
+
self.norms_1 = nn.ModuleList()
|
84 |
+
self.norms_2 = nn.ModuleList()
|
85 |
+
for i in range(n_layers):
|
86 |
+
dilation = kernel_size ** i
|
87 |
+
padding = (kernel_size * dilation - dilation) // 2
|
88 |
+
self.convs_sep.append(nn.Conv1d(channels, channels, kernel_size,
|
89 |
+
groups=channels, dilation=dilation, padding=padding
|
90 |
+
))
|
91 |
+
self.convs_1x1.append(nn.Conv1d(channels, channels, 1))
|
92 |
+
self.norms_1.append(LayerNorm(channels))
|
93 |
+
self.norms_2.append(LayerNorm(channels))
|
94 |
+
|
95 |
+
def forward(self, x, x_mask, g=None):
|
96 |
+
if g is not None:
|
97 |
+
x = x + g
|
98 |
+
for i in range(self.n_layers):
|
99 |
+
y = self.convs_sep[i](x * x_mask)
|
100 |
+
y = self.norms_1[i](y)
|
101 |
+
y = F.gelu(y)
|
102 |
+
y = self.convs_1x1[i](y)
|
103 |
+
y = self.norms_2[i](y)
|
104 |
+
y = F.gelu(y)
|
105 |
+
y = self.drop(y)
|
106 |
+
x = x + y
|
107 |
+
return x * x_mask
|
108 |
+
|
109 |
+
|
110 |
+
class WN(torch.nn.Module):
|
111 |
+
def __init__(self, hidden_channels, kernel_size, dilation_rate, n_layers, gin_channels=0, p_dropout=0):
|
112 |
+
super(WN, self).__init__()
|
113 |
+
assert(kernel_size % 2 == 1)
|
114 |
+
self.hidden_channels =hidden_channels
|
115 |
+
self.kernel_size = kernel_size,
|
116 |
+
self.dilation_rate = dilation_rate
|
117 |
+
self.n_layers = n_layers
|
118 |
+
self.gin_channels = gin_channels
|
119 |
+
self.p_dropout = p_dropout
|
120 |
+
|
121 |
+
self.in_layers = torch.nn.ModuleList()
|
122 |
+
self.res_skip_layers = torch.nn.ModuleList()
|
123 |
+
self.drop = nn.Dropout(p_dropout)
|
124 |
+
|
125 |
+
if gin_channels != 0:
|
126 |
+
cond_layer = torch.nn.Conv1d(gin_channels, 2*hidden_channels*n_layers, 1)
|
127 |
+
self.cond_layer = torch.nn.utils.weight_norm(cond_layer, name='weight')
|
128 |
+
|
129 |
+
for i in range(n_layers):
|
130 |
+
dilation = dilation_rate ** i
|
131 |
+
padding = int((kernel_size * dilation - dilation) / 2)
|
132 |
+
in_layer = torch.nn.Conv1d(hidden_channels, 2*hidden_channels, kernel_size,
|
133 |
+
dilation=dilation, padding=padding)
|
134 |
+
in_layer = torch.nn.utils.weight_norm(in_layer, name='weight')
|
135 |
+
self.in_layers.append(in_layer)
|
136 |
+
|
137 |
+
# last one is not necessary
|
138 |
+
if i < n_layers - 1:
|
139 |
+
res_skip_channels = 2 * hidden_channels
|
140 |
+
else:
|
141 |
+
res_skip_channels = hidden_channels
|
142 |
+
|
143 |
+
res_skip_layer = torch.nn.Conv1d(hidden_channels, res_skip_channels, 1)
|
144 |
+
res_skip_layer = torch.nn.utils.weight_norm(res_skip_layer, name='weight')
|
145 |
+
self.res_skip_layers.append(res_skip_layer)
|
146 |
+
|
147 |
+
def forward(self, x, x_mask, g=None, **kwargs):
|
148 |
+
output = torch.zeros_like(x)
|
149 |
+
n_channels_tensor = torch.IntTensor([self.hidden_channels])
|
150 |
+
|
151 |
+
if g is not None:
|
152 |
+
g = self.cond_layer(g)
|
153 |
+
|
154 |
+
for i in range(self.n_layers):
|
155 |
+
x_in = self.in_layers[i](x)
|
156 |
+
if g is not None:
|
157 |
+
cond_offset = i * 2 * self.hidden_channels
|
158 |
+
g_l = g[:,cond_offset:cond_offset+2*self.hidden_channels,:]
|
159 |
+
else:
|
160 |
+
g_l = torch.zeros_like(x_in)
|
161 |
+
|
162 |
+
acts = commons.fused_add_tanh_sigmoid_multiply(
|
163 |
+
x_in,
|
164 |
+
g_l,
|
165 |
+
n_channels_tensor)
|
166 |
+
acts = self.drop(acts)
|
167 |
+
|
168 |
+
res_skip_acts = self.res_skip_layers[i](acts)
|
169 |
+
if i < self.n_layers - 1:
|
170 |
+
res_acts = res_skip_acts[:,:self.hidden_channels,:]
|
171 |
+
x = (x + res_acts) * x_mask
|
172 |
+
output = output + res_skip_acts[:,self.hidden_channels:,:]
|
173 |
+
else:
|
174 |
+
output = output + res_skip_acts
|
175 |
+
return output * x_mask
|
176 |
+
|
177 |
+
def remove_weight_norm(self):
|
178 |
+
if self.gin_channels != 0:
|
179 |
+
torch.nn.utils.remove_weight_norm(self.cond_layer)
|
180 |
+
for l in self.in_layers:
|
181 |
+
torch.nn.utils.remove_weight_norm(l)
|
182 |
+
for l in self.res_skip_layers:
|
183 |
+
torch.nn.utils.remove_weight_norm(l)
|
184 |
+
|
185 |
+
|
186 |
+
class ResBlock1(torch.nn.Module):
|
187 |
+
def __init__(self, channels, kernel_size=3, dilation=(1, 3, 5)):
|
188 |
+
super(ResBlock1, self).__init__()
|
189 |
+
self.convs1 = nn.ModuleList([
|
190 |
+
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[0],
|
191 |
+
padding=get_padding(kernel_size, dilation[0]))),
|
192 |
+
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[1],
|
193 |
+
padding=get_padding(kernel_size, dilation[1]))),
|
194 |
+
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[2],
|
195 |
+
padding=get_padding(kernel_size, dilation[2])))
|
196 |
+
])
|
197 |
+
self.convs1.apply(init_weights)
|
198 |
+
|
199 |
+
self.convs2 = nn.ModuleList([
|
200 |
+
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
|
201 |
+
padding=get_padding(kernel_size, 1))),
|
202 |
+
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
|
203 |
+
padding=get_padding(kernel_size, 1))),
|
204 |
+
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
|
205 |
+
padding=get_padding(kernel_size, 1)))
|
206 |
+
])
|
207 |
+
self.convs2.apply(init_weights)
|
208 |
+
|
209 |
+
def forward(self, x, x_mask=None):
|
210 |
+
for c1, c2 in zip(self.convs1, self.convs2):
|
211 |
+
xt = F.leaky_relu(x, LRELU_SLOPE)
|
212 |
+
if x_mask is not None:
|
213 |
+
xt = xt * x_mask
|
214 |
+
xt = c1(xt)
|
215 |
+
xt = F.leaky_relu(xt, LRELU_SLOPE)
|
216 |
+
if x_mask is not None:
|
217 |
+
xt = xt * x_mask
|
218 |
+
xt = c2(xt)
|
219 |
+
x = xt + x
|
220 |
+
if x_mask is not None:
|
221 |
+
x = x * x_mask
|
222 |
+
return x
|
223 |
+
|
224 |
+
def remove_weight_norm(self):
|
225 |
+
for l in self.convs1:
|
226 |
+
remove_weight_norm(l)
|
227 |
+
for l in self.convs2:
|
228 |
+
remove_weight_norm(l)
|
229 |
+
|
230 |
+
|
231 |
+
class ResBlock2(torch.nn.Module):
|
232 |
+
def __init__(self, channels, kernel_size=3, dilation=(1, 3)):
|
233 |
+
super(ResBlock2, self).__init__()
|
234 |
+
self.convs = nn.ModuleList([
|
235 |
+
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[0],
|
236 |
+
padding=get_padding(kernel_size, dilation[0]))),
|
237 |
+
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[1],
|
238 |
+
padding=get_padding(kernel_size, dilation[1])))
|
239 |
+
])
|
240 |
+
self.convs.apply(init_weights)
|
241 |
+
|
242 |
+
def forward(self, x, x_mask=None):
|
243 |
+
for c in self.convs:
|
244 |
+
xt = F.leaky_relu(x, LRELU_SLOPE)
|
245 |
+
if x_mask is not None:
|
246 |
+
xt = xt * x_mask
|
247 |
+
xt = c(xt)
|
248 |
+
x = xt + x
|
249 |
+
if x_mask is not None:
|
250 |
+
x = x * x_mask
|
251 |
+
return x
|
252 |
+
|
253 |
+
def remove_weight_norm(self):
|
254 |
+
for l in self.convs:
|
255 |
+
remove_weight_norm(l)
|
256 |
+
|
257 |
+
|
258 |
+
class Log(nn.Module):
|
259 |
+
def forward(self, x, x_mask, reverse=False, **kwargs):
|
260 |
+
if not reverse:
|
261 |
+
y = torch.log(torch.clamp_min(x, 1e-5)) * x_mask
|
262 |
+
logdet = torch.sum(-y, [1, 2])
|
263 |
+
return y, logdet
|
264 |
+
else:
|
265 |
+
x = torch.exp(x) * x_mask
|
266 |
+
return x
|
267 |
+
|
268 |
+
|
269 |
+
class Flip(nn.Module):
|
270 |
+
def forward(self, x, *args, reverse=False, **kwargs):
|
271 |
+
x = torch.flip(x, [1])
|
272 |
+
if not reverse:
|
273 |
+
logdet = torch.zeros(x.size(0)).to(dtype=x.dtype, device=x.device)
|
274 |
+
return x, logdet
|
275 |
+
else:
|
276 |
+
return x
|
277 |
+
|
278 |
+
|
279 |
+
class ElementwiseAffine(nn.Module):
|
280 |
+
def __init__(self, channels):
|
281 |
+
super().__init__()
|
282 |
+
self.channels = channels
|
283 |
+
self.m = nn.Parameter(torch.zeros(channels,1))
|
284 |
+
self.logs = nn.Parameter(torch.zeros(channels,1))
|
285 |
+
|
286 |
+
def forward(self, x, x_mask, reverse=False, **kwargs):
|
287 |
+
if not reverse:
|
288 |
+
y = self.m + torch.exp(self.logs) * x
|
289 |
+
y = y * x_mask
|
290 |
+
logdet = torch.sum(self.logs * x_mask, [1,2])
|
291 |
+
return y, logdet
|
292 |
+
else:
|
293 |
+
x = (x - self.m) * torch.exp(-self.logs) * x_mask
|
294 |
+
return x
|
295 |
+
|
296 |
+
|
297 |
+
class ResidualCouplingLayer(nn.Module):
|
298 |
+
def __init__(self,
|
299 |
+
channels,
|
300 |
+
hidden_channels,
|
301 |
+
kernel_size,
|
302 |
+
dilation_rate,
|
303 |
+
n_layers,
|
304 |
+
p_dropout=0,
|
305 |
+
gin_channels=0,
|
306 |
+
mean_only=False):
|
307 |
+
assert channels % 2 == 0, "channels should be divisible by 2"
|
308 |
+
super().__init__()
|
309 |
+
self.channels = channels
|
310 |
+
self.hidden_channels = hidden_channels
|
311 |
+
self.kernel_size = kernel_size
|
312 |
+
self.dilation_rate = dilation_rate
|
313 |
+
self.n_layers = n_layers
|
314 |
+
self.half_channels = channels // 2
|
315 |
+
self.mean_only = mean_only
|
316 |
+
|
317 |
+
self.pre = nn.Conv1d(self.half_channels, hidden_channels, 1)
|
318 |
+
self.enc = WN(hidden_channels, kernel_size, dilation_rate, n_layers, p_dropout=p_dropout, gin_channels=gin_channels)
|
319 |
+
self.post = nn.Conv1d(hidden_channels, self.half_channels * (2 - mean_only), 1)
|
320 |
+
self.post.weight.data.zero_()
|
321 |
+
self.post.bias.data.zero_()
|
322 |
+
|
323 |
+
def forward(self, x, x_mask, g=None, reverse=False):
|
324 |
+
x0, x1 = torch.split(x, [self.half_channels]*2, 1)
|
325 |
+
h = self.pre(x0) * x_mask
|
326 |
+
h = self.enc(h, x_mask, g=g)
|
327 |
+
stats = self.post(h) * x_mask
|
328 |
+
if not self.mean_only:
|
329 |
+
m, logs = torch.split(stats, [self.half_channels]*2, 1)
|
330 |
+
else:
|
331 |
+
m = stats
|
332 |
+
logs = torch.zeros_like(m)
|
333 |
+
|
334 |
+
if not reverse:
|
335 |
+
x1 = m + x1 * torch.exp(logs) * x_mask
|
336 |
+
x = torch.cat([x0, x1], 1)
|
337 |
+
logdet = torch.sum(logs, [1,2])
|
338 |
+
return x, logdet
|
339 |
+
else:
|
340 |
+
x1 = (x1 - m) * torch.exp(-logs) * x_mask
|
341 |
+
x = torch.cat([x0, x1], 1)
|
342 |
+
return x
|