BetaAI_Chat / app.py
Yumenohoshi's picture
Update app.py
87d74f7 verified
raw
history blame
3.13 kB
# ウェブUIの起動
import os
import itertools
import torch
from transformers import AutoTokenizer
import ctranslate2
import gradio as gr
DESCRIPTION="""
## 概要
- これは、とある研究発表のために作られたチャットルーム(スペース)です。アクセス過多の場合は、少し時間をおいてから再度アクセスしてください。
- 詳細設定にて、AIが生成する文章のテイストを調整することが出来ます。
- AIの名前は「ベータ」です。
## たのむぞ
- あまり個人情報を入力しないでください。
- 会話内容は収集しておりません。
"""
device = "cuda" if torch.cuda.is_available() else "cpu"
generator = ctranslate2.Generator("./FixedStar-BETA-7b-ct2", device=device)
tokenizer = AutoTokenizer.from_pretrained(
"Yumenohoshi/FixedStar-BETA-7b", use_fast=True)
def inference_func(prompt, max_length=128, sampling_temperature=0.7):
tokens = tokenizer.convert_ids_to_tokens(
tokenizer.encode(prompt, add_special_tokens=False)
)
results = generator.generate_batch(
[tokens],
max_length=max_length,
sampling_topk=20,
sampling_temperature=sampling_temperature,
include_prompt_in_result=False,
)
output = tokenizer.decode(results[0].sequences_ids[0])
return output
def make_prompt(message, chat_history, max_context_size: int = 10):
contexts = chat_history + [[message, ""]]
contexts = list(itertools.chain.from_iterable(contexts))
if max_context_size > 0:
context_size = max_context_size - 1
else:
context_size = 100000
contexts = contexts[-context_size:]
prompt = []
for idx, context in enumerate(reversed(contexts)):
if idx % 2 == 0:
prompt = [f"ASSISTANT: {context}"] + prompt
else:
prompt = [f"USER: {context}"] + prompt
prompt = "\n".join(prompt)
return prompt
def interact_func(message, chat_history, max_context_size, max_length, sampling_temperature):
prompt = make_prompt(message, chat_history, max_context_size)
print(f"prompt: {prompt}")
generated = inference_func(prompt, max_length, sampling_temperature)
print(f"generated: {generated}")
chat_history.append((message, generated))
return "", chat_history
gr.Markdown(DESCRIPTION)
with gr.Blocks(theme="monochrome", css="style.css") as demo:
with gr.Accordion("Configs", open=False):
# max_context_size = the number of turns * 2
max_context_size = gr.Number(value=20, label="記憶する会話ターン数", precision=0)
max_length = gr.Number(value=128, label="最大文字数", precision=0)
sampling_temperature = gr.Slider(0.0, 2.0, value=0.7, step=0.1, label="創造性")
chatbot = gr.Chatbot()
msg = gr.Textbox()
clear = gr.Button("消す")
msg.submit(
interact_func,
[msg, chatbot, max_context_size, max_length, sampling_temperature],
[msg, chatbot],
)
clear.click(lambda: None, None, chatbot, queue=False)
if __name__ == "__main__":
demo.launch(debug=True, share=True)