Spaces:
Runtime error
Runtime error
cached_exmaple=False
Browse files
app.py
CHANGED
@@ -3,7 +3,8 @@
|
|
3 |
|
4 |
import glob
|
5 |
import gradio as gr
|
6 |
-
import os
|
|
|
7 |
|
8 |
import subprocess
|
9 |
|
@@ -70,13 +71,15 @@ def generate_image(seed, psi):
|
|
70 |
img = iface(seed, psi)
|
71 |
return img
|
72 |
|
|
|
73 |
random.seed(1993)
|
74 |
model_types = ['icon-filter', 'pifu', 'pamir']
|
75 |
-
examples = [[item, random.choice(model_types)] for item in random.sample(
|
|
|
76 |
|
77 |
with gr.Blocks() as demo:
|
78 |
gr.Markdown(description)
|
79 |
-
|
80 |
out_lst = []
|
81 |
with gr.Row():
|
82 |
with gr.Column():
|
@@ -86,7 +89,8 @@ with gr.Blocks() as demo:
|
|
86 |
0, 100, step=1, default=0, label='Seed (For Image Generation)')
|
87 |
psi = gr.inputs.Slider(
|
88 |
0, 2, step=0.05, default=0.7, label='Truncation psi (For Image Generation)')
|
89 |
-
radio_choice = gr.Radio(
|
|
|
90 |
inp = gr.Image(type="filepath", label="Input Image")
|
91 |
with gr.Row():
|
92 |
btn_sample = gr.Button("Sample Image")
|
@@ -94,29 +98,33 @@ with gr.Blocks() as demo:
|
|
94 |
|
95 |
gr.Examples(examples=examples,
|
96 |
inputs=[inp, radio_choice],
|
97 |
-
cache_examples=
|
98 |
fn=generate_model,
|
99 |
outputs=out_lst)
|
100 |
|
101 |
-
out_vid_download = gr.File(
|
|
|
102 |
|
103 |
with gr.Column():
|
104 |
-
overlap_inp = gr.Image(
|
|
|
105 |
out_smpl = gr.Model3D(
|
106 |
clear_color=[0.0, 0.0, 0.0, 0.0], label="SMPL")
|
107 |
out_smpl_download = gr.File(label="Download SMPL mesh")
|
108 |
out_smpl_npy_download = gr.File(label="Download SMPL params")
|
109 |
out_recon = gr.Model3D(
|
110 |
-
clear_color=[0.0, 0.0, 0.0, 0.0], label="
|
111 |
out_recon_download = gr.File(label="Download clothed human mesh")
|
112 |
out_final = gr.Model3D(
|
113 |
-
clear_color=[0.0, 0.0, 0.0, 0.0], label="
|
114 |
-
out_final_download = gr.File(
|
|
|
115 |
|
116 |
out_lst = [out_smpl, out_smpl_download, out_smpl_npy_download, out_recon, out_recon_download,
|
117 |
out_final, out_final_download, out_vid_download, overlap_inp]
|
118 |
|
119 |
-
btn_submit.click(fn=generate_model, inputs=[
|
|
|
120 |
btn_sample.click(fn=generate_image, inputs=[seed, psi], outputs=inp)
|
121 |
|
122 |
if __name__ == "__main__":
|
|
|
3 |
|
4 |
import glob
|
5 |
import gradio as gr
|
6 |
+
import os
|
7 |
+
import random
|
8 |
|
9 |
import subprocess
|
10 |
|
|
|
71 |
img = iface(seed, psi)
|
72 |
return img
|
73 |
|
74 |
+
|
75 |
random.seed(1993)
|
76 |
model_types = ['icon-filter', 'pifu', 'pamir']
|
77 |
+
examples = [[item, random.choice(model_types)] for item in random.sample(
|
78 |
+
sorted(glob.glob('examples/*.png')), 8)]
|
79 |
|
80 |
with gr.Blocks() as demo:
|
81 |
gr.Markdown(description)
|
82 |
+
|
83 |
out_lst = []
|
84 |
with gr.Row():
|
85 |
with gr.Column():
|
|
|
89 |
0, 100, step=1, default=0, label='Seed (For Image Generation)')
|
90 |
psi = gr.inputs.Slider(
|
91 |
0, 2, step=0.05, default=0.7, label='Truncation psi (For Image Generation)')
|
92 |
+
radio_choice = gr.Radio(
|
93 |
+
model_types, label='Method (For Reconstruction)', value='icon-filter')
|
94 |
inp = gr.Image(type="filepath", label="Input Image")
|
95 |
with gr.Row():
|
96 |
btn_sample = gr.Button("Sample Image")
|
|
|
98 |
|
99 |
gr.Examples(examples=examples,
|
100 |
inputs=[inp, radio_choice],
|
101 |
+
cache_examples=False,
|
102 |
fn=generate_model,
|
103 |
outputs=out_lst)
|
104 |
|
105 |
+
out_vid_download = gr.File(
|
106 |
+
label="Download Video, welcome share on Twitter with #ICON")
|
107 |
|
108 |
with gr.Column():
|
109 |
+
overlap_inp = gr.Image(
|
110 |
+
type="filepath", label="Image Normal Overlap")
|
111 |
out_smpl = gr.Model3D(
|
112 |
clear_color=[0.0, 0.0, 0.0, 0.0], label="SMPL")
|
113 |
out_smpl_download = gr.File(label="Download SMPL mesh")
|
114 |
out_smpl_npy_download = gr.File(label="Download SMPL params")
|
115 |
out_recon = gr.Model3D(
|
116 |
+
clear_color=[0.0, 0.0, 0.0, 0.0], label="Recon")
|
117 |
out_recon_download = gr.File(label="Download clothed human mesh")
|
118 |
out_final = gr.Model3D(
|
119 |
+
clear_color=[0.0, 0.0, 0.0, 0.0], label="Refined Recon")
|
120 |
+
out_final_download = gr.File(
|
121 |
+
label="Download refined clothed human mesh")
|
122 |
|
123 |
out_lst = [out_smpl, out_smpl_download, out_smpl_npy_download, out_recon, out_recon_download,
|
124 |
out_final, out_final_download, out_vid_download, overlap_inp]
|
125 |
|
126 |
+
btn_submit.click(fn=generate_model, inputs=[
|
127 |
+
inp, radio_choice], outputs=out_lst)
|
128 |
btn_sample.click(fn=generate_image, inputs=[seed, psi], outputs=inp)
|
129 |
|
130 |
if __name__ == "__main__":
|