ICON / lib /dataset /Evaluator.py
Yuliang's picture
done
2d5f249
raw
history blame
9.13 kB
# -*- coding: utf-8 -*-
# Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. (MPG) is
# holder of all proprietary rights on this computer program.
# You can only use this computer program if you have closed
# a license agreement with MPG or you get the right to use the computer
# program from someone who is authorized to grant you that right.
# Any use of the computer program without a valid license is prohibited and
# liable to prosecution.
#
# Copyright©2019 Max-Planck-Gesellschaft zur Förderung
# der Wissenschaften e.V. (MPG). acting on behalf of its Max Planck Institute
# for Intelligent Systems. All rights reserved.
#
# Contact: ps-license@tuebingen.mpg.de
from lib.renderer.gl.normal_render import NormalRender
from lib.dataset.mesh_util import projection
from lib.common.render import Render
from PIL import Image
import numpy as np
import torch
from torch import nn
import trimesh
import os.path as osp
from PIL import Image
class Evaluator:
_normal_render = None
@staticmethod
def init_gl():
Evaluator._normal_render = NormalRender(width=512, height=512)
def __init__(self, device):
self.device = device
self.render = Render(size=512, device=self.device)
self.error_term = nn.MSELoss()
self.offset = 0.0
self.scale_factor = None
def set_mesh(self, result_dict, scale_factor=1.0, offset=0.0):
for key in result_dict.keys():
if torch.is_tensor(result_dict[key]):
result_dict[key] = result_dict[key].detach().cpu().numpy()
for k, v in result_dict.items():
setattr(self, k, v)
self.scale_factor = scale_factor
self.offset = offset
def _render_normal(self, mesh, deg, norms=None):
view_mat = np.identity(4)
rz = deg / 180.0 * np.pi
model_mat = np.identity(4)
model_mat[:3, :3] = self._normal_render.euler_to_rot_mat(0, rz, 0)
model_mat[1, 3] = self.offset
view_mat[2, 2] *= -1
self._normal_render.set_matrices(view_mat, model_mat)
if norms is None:
norms = mesh.vertex_normals
self._normal_render.set_normal_mesh(self.scale_factor * mesh.vertices,
mesh.faces, norms, mesh.faces)
self._normal_render.draw()
normal_img = self._normal_render.get_color()
return normal_img
def render_mesh_list(self, mesh_lst):
self.offset = 0.0
self.scale_factor = 1.0
full_list = []
for mesh in mesh_lst:
row_lst = []
for deg in np.arange(0, 360, 90):
normal = self._render_normal(mesh, deg)
row_lst.append(normal)
full_list.append(np.concatenate(row_lst, axis=1))
res_array = np.concatenate(full_list, axis=0)
return res_array
def _get_reproj_normal_error(self, deg):
tgt_normal = self._render_normal(self.tgt_mesh, deg)
src_normal = self._render_normal(self.src_mesh, deg)
error = (((src_normal[:, :, :3] -
tgt_normal[:, :, :3])**2).sum(axis=2).mean(axis=(0, 1)))
return error, [src_normal, tgt_normal]
def render_normal(self, verts, faces):
verts = verts[0].detach().cpu().numpy()
faces = faces[0].detach().cpu().numpy()
mesh_F = trimesh.Trimesh(verts * np.array([1.0, -1.0, 1.0]), faces)
mesh_B = trimesh.Trimesh(verts * np.array([1.0, -1.0, -1.0]), faces)
self.scale_factor = 1.0
normal_F = self._render_normal(mesh_F, 0)
normal_B = self._render_normal(mesh_B,
0,
norms=mesh_B.vertex_normals *
np.array([-1.0, -1.0, 1.0]))
mask = normal_F[:, :, 3:4]
normal_F = (torch.as_tensor(2.0 * (normal_F - 0.5) * mask).permute(
2, 0, 1)[:3, :, :].float().unsqueeze(0).to(self.device))
normal_B = (torch.as_tensor(2.0 * (normal_B - 0.5) * mask).permute(
2, 0, 1)[:3, :, :].float().unsqueeze(0).to(self.device))
return {"T_normal_F": normal_F, "T_normal_B": normal_B}
def calculate_normal_consist(
self,
frontal=True,
back=True,
left=True,
right=True,
save_demo_img=None,
return_demo=False,
):
# reproj error
# if save_demo_img is not None, save a visualization at the given path (etc, "./test.png")
if self._normal_render is None:
print(
"In order to use normal render, "
"you have to call init_gl() before initialing any evaluator objects."
)
return -1
side_cnt = 0
total_error = 0
demo_list = []
if frontal:
side_cnt += 1
error, normal_lst = self._get_reproj_normal_error(0)
total_error += error
demo_list.append(np.concatenate(normal_lst, axis=0))
if back:
side_cnt += 1
error, normal_lst = self._get_reproj_normal_error(180)
total_error += error
demo_list.append(np.concatenate(normal_lst, axis=0))
if left:
side_cnt += 1
error, normal_lst = self._get_reproj_normal_error(90)
total_error += error
demo_list.append(np.concatenate(normal_lst, axis=0))
if right:
side_cnt += 1
error, normal_lst = self._get_reproj_normal_error(270)
total_error += error
demo_list.append(np.concatenate(normal_lst, axis=0))
if save_demo_img is not None:
res_array = np.concatenate(demo_list, axis=1)
res_img = Image.fromarray((res_array * 255).astype(np.uint8))
res_img.save(save_demo_img)
if return_demo:
res_array = np.concatenate(demo_list, axis=1)
return res_array
else:
return total_error
def space_transfer(self):
# convert from GT to SDF
self.verts_pr -= self.recon_size / 2.0
self.verts_pr /= self.recon_size / 2.0
self.verts_gt = projection(self.verts_gt, self.calib)
self.verts_gt[:, 1] *= -1
self.tgt_mesh = trimesh.Trimesh(self.verts_gt, self.faces_gt)
self.src_mesh = trimesh.Trimesh(self.verts_pr, self.faces_pr)
# (self.tgt_mesh+self.src_mesh).show()
def export_mesh(self, dir, name):
self.tgt_mesh.visual.vertex_colors = np.array([255, 0, 0])
self.src_mesh.visual.vertex_colors = np.array([0, 255, 0])
(self.tgt_mesh + self.src_mesh).export(
osp.join(dir, f"{name}_gt_pr.obj"))
def calculate_chamfer_p2s(self, sampled_points=1000):
"""calculate the geometry metrics [chamfer, p2s, chamfer_H, p2s_H]
Args:
verts_gt (torch.cuda.tensor): [N, 3]
faces_gt (torch.cuda.tensor): [M, 3]
verts_pr (torch.cuda.tensor): [N', 3]
faces_pr (torch.cuda.tensor): [M', 3]
sampled_points (int, optional): use smaller number for faster testing. Defaults to 1000.
Returns:
tuple: chamfer, p2s, chamfer_H, p2s_H
"""
gt_surface_pts, _ = trimesh.sample.sample_surface_even(
self.tgt_mesh, sampled_points)
pred_surface_pts, _ = trimesh.sample.sample_surface_even(
self.src_mesh, sampled_points)
_, dist_pred_gt, _ = trimesh.proximity.closest_point(
self.src_mesh, gt_surface_pts)
_, dist_gt_pred, _ = trimesh.proximity.closest_point(
self.tgt_mesh, pred_surface_pts)
dist_pred_gt[np.isnan(dist_pred_gt)] = 0
dist_gt_pred[np.isnan(dist_gt_pred)] = 0
chamfer_dist = 0.5 * (dist_pred_gt.mean() +
dist_gt_pred.mean()).item() * 100
p2s_dist = dist_pred_gt.mean().item() * 100
return chamfer_dist, p2s_dist
def calc_acc(self, output, target, thres=0.5, use_sdf=False):
# # remove the surface points with thres
# non_surf_ids = (target != thres)
# output = output[non_surf_ids]
# target = target[non_surf_ids]
with torch.no_grad():
output = output.masked_fill(output < thres, 0.0)
output = output.masked_fill(output > thres, 1.0)
if use_sdf:
target = target.masked_fill(target < thres, 0.0)
target = target.masked_fill(target > thres, 1.0)
acc = output.eq(target).float().mean()
# iou, precison, recall
output = output > thres
target = target > thres
union = output | target
inter = output & target
_max = torch.tensor(1.0).to(output.device)
union = max(union.sum().float(), _max)
true_pos = max(inter.sum().float(), _max)
vol_pred = max(output.sum().float(), _max)
vol_gt = max(target.sum().float(), _max)
return acc, true_pos / union, true_pos / vol_pred, true_pos / vol_gt