Spaces:
Runtime error
Runtime error
# -*- coding: utf-8 -*- | |
# Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. (MPG) is | |
# holder of all proprietary rights on this computer program. | |
# You can only use this computer program if you have closed | |
# a license agreement with MPG or you get the right to use the computer | |
# program from someone who is authorized to grant you that right. | |
# Any use of the computer program without a valid license is prohibited and | |
# liable to prosecution. | |
# | |
# Copyright©2019 Max-Planck-Gesellschaft zur Förderung | |
# der Wissenschaften e.V. (MPG). acting on behalf of its Max Planck Institute | |
# for Intelligent Systems. All rights reserved. | |
# | |
# Contact: ps-license@tuebingen.mpg.de | |
from __future__ import absolute_import | |
from __future__ import print_function | |
from __future__ import division | |
from typing import Tuple, List, Optional | |
import numpy as np | |
import torch | |
import torch.nn.functional as F | |
from .utils import rot_mat_to_euler, Tensor | |
def find_dynamic_lmk_idx_and_bcoords( | |
vertices: Tensor, | |
pose: Tensor, | |
dynamic_lmk_faces_idx: Tensor, | |
dynamic_lmk_b_coords: Tensor, | |
neck_kin_chain: List[int], | |
pose2rot: bool = True, | |
) -> Tuple[Tensor, Tensor]: | |
''' Compute the faces, barycentric coordinates for the dynamic landmarks | |
To do so, we first compute the rotation of the neck around the y-axis | |
and then use a pre-computed look-up table to find the faces and the | |
barycentric coordinates that will be used. | |
Special thanks to Soubhik Sanyal (soubhik.sanyal@tuebingen.mpg.de) | |
for providing the original TensorFlow implementation and for the LUT. | |
Parameters | |
---------- | |
vertices: torch.tensor BxVx3, dtype = torch.float32 | |
The tensor of input vertices | |
pose: torch.tensor Bx(Jx3), dtype = torch.float32 | |
The current pose of the body model | |
dynamic_lmk_faces_idx: torch.tensor L, dtype = torch.long | |
The look-up table from neck rotation to faces | |
dynamic_lmk_b_coords: torch.tensor Lx3, dtype = torch.float32 | |
The look-up table from neck rotation to barycentric coordinates | |
neck_kin_chain: list | |
A python list that contains the indices of the joints that form the | |
kinematic chain of the neck. | |
dtype: torch.dtype, optional | |
Returns | |
------- | |
dyn_lmk_faces_idx: torch.tensor, dtype = torch.long | |
A tensor of size BxL that contains the indices of the faces that | |
will be used to compute the current dynamic landmarks. | |
dyn_lmk_b_coords: torch.tensor, dtype = torch.float32 | |
A tensor of size BxL that contains the indices of the faces that | |
will be used to compute the current dynamic landmarks. | |
''' | |
dtype = vertices.dtype | |
batch_size = vertices.shape[0] | |
if pose2rot: | |
aa_pose = torch.index_select(pose.view(batch_size, -1, 3), 1, | |
neck_kin_chain) | |
rot_mats = batch_rodrigues( | |
aa_pose.view(-1, 3)).view(batch_size, -1, 3, 3) | |
else: | |
rot_mats = torch.index_select( | |
pose.view(batch_size, -1, 3, 3), 1, neck_kin_chain) | |
rel_rot_mat = torch.eye( | |
3, device=vertices.device, dtype=dtype).unsqueeze_(dim=0).repeat( | |
batch_size, 1, 1) | |
for idx in range(len(neck_kin_chain)): | |
rel_rot_mat = torch.bmm(rot_mats[:, idx], rel_rot_mat) | |
y_rot_angle = torch.round( | |
torch.clamp(-rot_mat_to_euler(rel_rot_mat) * 180.0 / np.pi, | |
max=39)).to(dtype=torch.long) | |
neg_mask = y_rot_angle.lt(0).to(dtype=torch.long) | |
mask = y_rot_angle.lt(-39).to(dtype=torch.long) | |
neg_vals = mask * 78 + (1 - mask) * (39 - y_rot_angle) | |
y_rot_angle = (neg_mask * neg_vals + | |
(1 - neg_mask) * y_rot_angle) | |
dyn_lmk_faces_idx = torch.index_select(dynamic_lmk_faces_idx, | |
0, y_rot_angle) | |
dyn_lmk_b_coords = torch.index_select(dynamic_lmk_b_coords, | |
0, y_rot_angle) | |
return dyn_lmk_faces_idx, dyn_lmk_b_coords | |
def vertices2landmarks( | |
vertices: Tensor, | |
faces: Tensor, | |
lmk_faces_idx: Tensor, | |
lmk_bary_coords: Tensor | |
) -> Tensor: | |
''' Calculates landmarks by barycentric interpolation | |
Parameters | |
---------- | |
vertices: torch.tensor BxVx3, dtype = torch.float32 | |
The tensor of input vertices | |
faces: torch.tensor Fx3, dtype = torch.long | |
The faces of the mesh | |
lmk_faces_idx: torch.tensor L, dtype = torch.long | |
The tensor with the indices of the faces used to calculate the | |
landmarks. | |
lmk_bary_coords: torch.tensor Lx3, dtype = torch.float32 | |
The tensor of barycentric coordinates that are used to interpolate | |
the landmarks | |
Returns | |
------- | |
landmarks: torch.tensor BxLx3, dtype = torch.float32 | |
The coordinates of the landmarks for each mesh in the batch | |
''' | |
# Extract the indices of the vertices for each face | |
# BxLx3 | |
batch_size, num_verts = vertices.shape[:2] | |
device = vertices.device | |
lmk_faces = torch.index_select(faces, 0, lmk_faces_idx.view(-1)).view( | |
batch_size, -1, 3) | |
lmk_faces += torch.arange( | |
batch_size, dtype=torch.long, device=device).view(-1, 1, 1) * num_verts | |
lmk_vertices = vertices.view(-1, 3)[lmk_faces].view( | |
batch_size, -1, 3, 3) | |
landmarks = torch.einsum('blfi,blf->bli', [lmk_vertices, lmk_bary_coords]) | |
return landmarks | |
def lbs( | |
betas: Tensor, | |
pose: Tensor, | |
v_template: Tensor, | |
shapedirs: Tensor, | |
posedirs: Tensor, | |
J_regressor: Tensor, | |
parents: Tensor, | |
lbs_weights: Tensor, | |
pose2rot: bool = True, | |
return_transformation: bool = False, | |
) -> Tuple[Tensor, Tensor, Optional[Tensor], Optional[Tensor]]: | |
''' Performs Linear Blend Skinning with the given shape and pose parameters | |
Parameters | |
---------- | |
betas : torch.tensor BxNB | |
The tensor of shape parameters | |
pose : torch.tensor Bx(J + 1) * 3 | |
The pose parameters in axis-angle format | |
v_template torch.tensor BxVx3 | |
The template mesh that will be deformed | |
shapedirs : torch.tensor 1xNB | |
The tensor of PCA shape displacements | |
posedirs : torch.tensor Px(V * 3) | |
The pose PCA coefficients | |
J_regressor : torch.tensor JxV | |
The regressor array that is used to calculate the joints from | |
the position of the vertices | |
parents: torch.tensor J | |
The array that describes the kinematic tree for the model | |
lbs_weights: torch.tensor N x V x (J + 1) | |
The linear blend skinning weights that represent how much the | |
rotation matrix of each part affects each vertex | |
pose2rot: bool, optional | |
Flag on whether to convert the input pose tensor to rotation | |
matrices. The default value is True. If False, then the pose tensor | |
should already contain rotation matrices and have a size of | |
Bx(J + 1)x9 | |
dtype: torch.dtype, optional | |
Returns | |
------- | |
verts: torch.tensor BxVx3 | |
The vertices of the mesh after applying the shape and pose | |
displacements. | |
joints: torch.tensor BxJx3 | |
The joints of the model | |
''' | |
batch_size = max(betas.shape[0], pose.shape[0]) | |
device, dtype = betas.device, betas.dtype | |
# Add shape contribution | |
v_shaped = v_template + blend_shapes(betas, shapedirs) | |
# Get the joints | |
# NxJx3 array | |
J = vertices2joints(J_regressor, v_shaped) | |
# 3. Add pose blend shapes | |
# N x J x 3 x 3 | |
ident = torch.eye(3, dtype=dtype, device=device) | |
if pose2rot: | |
rot_mats = batch_rodrigues(pose.view(-1, 3)).view( | |
[batch_size, -1, 3, 3]) | |
pose_feature = (rot_mats[:, 1:, :, :] - ident).view([batch_size, -1]) | |
# (N x P) x (P, V * 3) -> N x V x 3 | |
pose_offsets = torch.matmul( | |
pose_feature, posedirs).view(batch_size, -1, 3) | |
else: | |
pose_feature = pose[:, 1:].view(batch_size, -1, 3, 3) - ident | |
rot_mats = pose.view(batch_size, -1, 3, 3) | |
pose_offsets = torch.matmul(pose_feature.view(batch_size, -1), | |
posedirs).view(batch_size, -1, 3) | |
v_posed = pose_offsets + v_shaped | |
# 4. Get the global joint location | |
J_transformed, A = batch_rigid_transform(rot_mats, J, parents, dtype=dtype) | |
# 5. Do skinning: | |
# W is N x V x (J + 1) | |
W = lbs_weights.unsqueeze(dim=0).expand([batch_size, -1, -1]) | |
# (N x V x (J + 1)) x (N x (J + 1) x 16) | |
num_joints = J_regressor.shape[0] | |
T = torch.matmul(W, A.view(batch_size, num_joints, 16)) \ | |
.view(batch_size, -1, 4, 4) | |
homogen_coord = torch.ones([batch_size, v_posed.shape[1], 1], | |
dtype=dtype, device=device) | |
v_posed_homo = torch.cat([v_posed, homogen_coord], dim=2) | |
v_homo = torch.matmul(T, torch.unsqueeze(v_posed_homo, dim=-1)) | |
verts = v_homo[:, :, :3, 0] | |
if return_transformation: | |
return verts, J_transformed, A, T | |
return verts, J_transformed | |
def vertices2joints(J_regressor: Tensor, vertices: Tensor) -> Tensor: | |
''' Calculates the 3D joint locations from the vertices | |
Parameters | |
---------- | |
J_regressor : torch.tensor JxV | |
The regressor array that is used to calculate the joints from the | |
position of the vertices | |
vertices : torch.tensor BxVx3 | |
The tensor of mesh vertices | |
Returns | |
------- | |
torch.tensor BxJx3 | |
The location of the joints | |
''' | |
return torch.einsum('bik,ji->bjk', [vertices, J_regressor]) | |
def blend_shapes(betas: Tensor, shape_disps: Tensor) -> Tensor: | |
''' Calculates the per vertex displacement due to the blend shapes | |
Parameters | |
---------- | |
betas : torch.tensor Bx(num_betas) | |
Blend shape coefficients | |
shape_disps: torch.tensor Vx3x(num_betas) | |
Blend shapes | |
Returns | |
------- | |
torch.tensor BxVx3 | |
The per-vertex displacement due to shape deformation | |
''' | |
# Displacement[b, m, k] = sum_{l} betas[b, l] * shape_disps[m, k, l] | |
# i.e. Multiply each shape displacement by its corresponding beta and | |
# then sum them. | |
blend_shape = torch.einsum('bl,mkl->bmk', [betas, shape_disps]) | |
return blend_shape | |
def batch_rodrigues( | |
rot_vecs: Tensor, | |
epsilon: float = 1e-8, | |
) -> Tensor: | |
''' Calculates the rotation matrices for a batch of rotation vectors | |
Parameters | |
---------- | |
rot_vecs: torch.tensor Nx3 | |
array of N axis-angle vectors | |
Returns | |
------- | |
R: torch.tensor Nx3x3 | |
The rotation matrices for the given axis-angle parameters | |
''' | |
batch_size = rot_vecs.shape[0] | |
device, dtype = rot_vecs.device, rot_vecs.dtype | |
angle = torch.norm(rot_vecs + 1e-8, dim=1, keepdim=True) | |
rot_dir = rot_vecs / angle | |
cos = torch.unsqueeze(torch.cos(angle), dim=1) | |
sin = torch.unsqueeze(torch.sin(angle), dim=1) | |
# Bx1 arrays | |
rx, ry, rz = torch.split(rot_dir, 1, dim=1) | |
K = torch.zeros((batch_size, 3, 3), dtype=dtype, device=device) | |
zeros = torch.zeros((batch_size, 1), dtype=dtype, device=device) | |
K = torch.cat([zeros, -rz, ry, rz, zeros, -rx, -ry, rx, zeros], dim=1) \ | |
.view((batch_size, 3, 3)) | |
ident = torch.eye(3, dtype=dtype, device=device).unsqueeze(dim=0) | |
rot_mat = ident + sin * K + (1 - cos) * torch.bmm(K, K) | |
return rot_mat | |
def transform_mat(R: Tensor, t: Tensor) -> Tensor: | |
''' Creates a batch of transformation matrices | |
Args: | |
- R: Bx3x3 array of a batch of rotation matrices | |
- t: Bx3x1 array of a batch of translation vectors | |
Returns: | |
- T: Bx4x4 Transformation matrix | |
''' | |
# No padding left or right, only add an extra row | |
return torch.cat([F.pad(R, [0, 0, 0, 1]), | |
F.pad(t, [0, 0, 0, 1], value=1)], dim=2) | |
def batch_rigid_transform( | |
rot_mats: Tensor, | |
joints: Tensor, | |
parents: Tensor, | |
dtype=torch.float32 | |
) -> Tensor: | |
""" | |
Applies a batch of rigid transformations to the joints | |
Parameters | |
---------- | |
rot_mats : torch.tensor BxNx3x3 | |
Tensor of rotation matrices | |
joints : torch.tensor BxNx3 | |
Locations of joints | |
parents : torch.tensor BxN | |
The kinematic tree of each object | |
dtype : torch.dtype, optional: | |
The data type of the created tensors, the default is torch.float32 | |
Returns | |
------- | |
posed_joints : torch.tensor BxNx3 | |
The locations of the joints after applying the pose rotations | |
rel_transforms : torch.tensor BxNx4x4 | |
The relative (with respect to the root joint) rigid transformations | |
for all the joints | |
""" | |
joints = torch.unsqueeze(joints, dim=-1) | |
rel_joints = joints.clone() | |
rel_joints[:, 1:] -= joints[:, parents[1:]] | |
transforms_mat = transform_mat( | |
rot_mats.reshape(-1, 3, 3), | |
rel_joints.reshape(-1, 3, 1)).reshape(-1, joints.shape[1], 4, 4) | |
transform_chain = [transforms_mat[:, 0]] | |
for i in range(1, parents.shape[0]): | |
# Subtract the joint location at the rest pose | |
# No need for rotation, since it's identity when at rest | |
curr_res = torch.matmul(transform_chain[parents[i]], | |
transforms_mat[:, i]) | |
transform_chain.append(curr_res) | |
transforms = torch.stack(transform_chain, dim=1) | |
# The last column of the transformations contains the posed joints | |
posed_joints = transforms[:, :, :3, 3] | |
joints_homogen = F.pad(joints, [0, 0, 0, 1]) | |
rel_transforms = transforms - F.pad( | |
torch.matmul(transforms, joints_homogen), [3, 0, 0, 0, 0, 0, 0, 0]) | |
return posed_joints, rel_transforms | |