Spaces:
Runtime error
Runtime error
# -*- coding: utf-8 -*- | |
# Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. (MPG) is | |
# holder of all proprietary rights on this computer program. | |
# You can only use this computer program if you have closed | |
# a license agreement with MPG or you get the right to use the computer | |
# program from someone who is authorized to grant you that right. | |
# Any use of the computer program without a valid license is prohibited and | |
# liable to prosecution. | |
# | |
# Copyright©2019 Max-Planck-Gesellschaft zur Förderung | |
# der Wissenschaften e.V. (MPG). acting on behalf of its Max Planck Institute | |
# for Intelligent Systems. All rights reserved. | |
# | |
# Contact: ps-license@tuebingen.mpg.de | |
import torch.nn as nn | |
import pytorch_lightning as pl | |
class BaseNetwork(pl.LightningModule): | |
def __init__(self): | |
super(BaseNetwork, self).__init__() | |
def init_weights(self, init_type='xavier', gain=0.02): | |
''' | |
initializes network's weights | |
init_type: normal | xavier | kaiming | orthogonal | |
https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix/blob/9451e70673400885567d08a9e97ade2524c700d0/models/networks.py#L39 | |
''' | |
def init_func(m): | |
classname = m.__class__.__name__ | |
if hasattr(m, 'weight') and (classname.find('Conv') != -1 | |
or classname.find('Linear') != -1): | |
if init_type == 'normal': | |
nn.init.normal_(m.weight.data, 0.0, gain) | |
elif init_type == 'xavier': | |
nn.init.xavier_normal_(m.weight.data, gain=gain) | |
elif init_type == 'kaiming': | |
nn.init.kaiming_normal_(m.weight.data, a=0, mode='fan_in') | |
elif init_type == 'orthogonal': | |
nn.init.orthogonal_(m.weight.data, gain=gain) | |
if hasattr(m, 'bias') and m.bias is not None: | |
nn.init.constant_(m.bias.data, 0.0) | |
elif classname.find('BatchNorm2d') != -1: | |
nn.init.normal_(m.weight.data, 1.0, gain) | |
nn.init.constant_(m.bias.data, 0.0) | |
self.apply(init_func) | |
class Residual3D(BaseNetwork): | |
def __init__(self, numIn, numOut): | |
super(Residual3D, self).__init__() | |
self.numIn = numIn | |
self.numOut = numOut | |
self.with_bias = True | |
# self.bn = nn.GroupNorm(4, self.numIn) | |
self.bn = nn.BatchNorm3d(self.numIn) | |
self.relu = nn.ReLU(inplace=True) | |
self.conv1 = nn.Conv3d(self.numIn, | |
self.numOut, | |
bias=self.with_bias, | |
kernel_size=3, | |
stride=1, | |
padding=2, | |
dilation=2) | |
# self.bn1 = nn.GroupNorm(4, self.numOut) | |
self.bn1 = nn.BatchNorm3d(self.numOut) | |
self.conv2 = nn.Conv3d(self.numOut, | |
self.numOut, | |
bias=self.with_bias, | |
kernel_size=3, | |
stride=1, | |
padding=1) | |
# self.bn2 = nn.GroupNorm(4, self.numOut) | |
self.bn2 = nn.BatchNorm3d(self.numOut) | |
self.conv3 = nn.Conv3d(self.numOut, | |
self.numOut, | |
bias=self.with_bias, | |
kernel_size=3, | |
stride=1, | |
padding=1) | |
if self.numIn != self.numOut: | |
self.conv4 = nn.Conv3d(self.numIn, | |
self.numOut, | |
bias=self.with_bias, | |
kernel_size=1) | |
self.init_weights() | |
def forward(self, x): | |
residual = x | |
# out = self.bn(x) | |
# out = self.relu(out) | |
out = self.conv1(x) | |
out = self.bn1(out) | |
out = self.relu(out) | |
out = self.conv2(out) | |
out = self.bn2(out) | |
# out = self.conv3(out) | |
# out = self.relu(out) | |
if self.numIn != self.numOut: | |
residual = self.conv4(x) | |
return out + residual | |
class VolumeEncoder(BaseNetwork): | |
"""CycleGan Encoder""" | |
def __init__(self, num_in=3, num_out=32, num_stacks=2): | |
super(VolumeEncoder, self).__init__() | |
self.num_in = num_in | |
self.num_out = num_out | |
self.num_inter = 8 | |
self.num_stacks = num_stacks | |
self.with_bias = True | |
self.relu = nn.ReLU(inplace=True) | |
self.conv1 = nn.Conv3d(self.num_in, | |
self.num_inter, | |
bias=self.with_bias, | |
kernel_size=5, | |
stride=2, | |
padding=4, | |
dilation=2) | |
# self.bn1 = nn.GroupNorm(4, self.num_inter) | |
self.bn1 = nn.BatchNorm3d(self.num_inter) | |
self.conv2 = nn.Conv3d(self.num_inter, | |
self.num_out, | |
bias=self.with_bias, | |
kernel_size=5, | |
stride=2, | |
padding=4, | |
dilation=2) | |
# self.bn2 = nn.GroupNorm(4, self.num_out) | |
self.bn2 = nn.BatchNorm3d(self.num_out) | |
self.conv_out1 = nn.Conv3d(self.num_out, | |
self.num_out, | |
bias=self.with_bias, | |
kernel_size=3, | |
stride=1, | |
padding=1, | |
dilation=1) | |
self.conv_out2 = nn.Conv3d(self.num_out, | |
self.num_out, | |
bias=self.with_bias, | |
kernel_size=3, | |
stride=1, | |
padding=1, | |
dilation=1) | |
for idx in range(self.num_stacks): | |
self.add_module("res" + str(idx), | |
Residual3D(self.num_out, self.num_out)) | |
self.init_weights() | |
def forward(self, x, intermediate_output=True): | |
out = self.conv1(x) | |
out = self.bn1(out) | |
out = self.relu(out) | |
out = self.conv2(out) | |
out = self.bn2(out) | |
out = self.relu(out) | |
out_lst = [] | |
for idx in range(self.num_stacks): | |
out = self._modules["res" + str(idx)](out) | |
out_lst.append(out) | |
if intermediate_output: | |
return out_lst | |
else: | |
return [out_lst[-1]] | |