ICON / lib /common /render.py
Yuliang's picture
add video for visualization
3861796
raw
history blame
12.4 kB
# -*- coding: utf-8 -*-
# Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. (MPG) is
# holder of all proprietary rights on this computer program.
# You can only use this computer program if you have closed
# a license agreement with MPG or you get the right to use the computer
# program from someone who is authorized to grant you that right.
# Any use of the computer program without a valid license is prohibited and
# liable to prosecution.
#
# Copyright©2019 Max-Planck-Gesellschaft zur Förderung
# der Wissenschaften e.V. (MPG). acting on behalf of its Max Planck Institute
# for Intelligent Systems. All rights reserved.
#
# Contact: ps-license@tuebingen.mpg.de
from pytorch3d.renderer import (
BlendParams,
blending,
look_at_view_transform,
FoVOrthographicCameras,
PointLights,
RasterizationSettings,
PointsRasterizationSettings,
PointsRenderer,
AlphaCompositor,
PointsRasterizer,
MeshRenderer,
MeshRasterizer,
SoftPhongShader,
SoftSilhouetteShader,
TexturesVertex,
)
from pytorch3d.renderer.mesh import TexturesVertex
from pytorch3d.structures import Meshes
import os, subprocess
from lib.dataset.mesh_util import SMPLX, get_visibility
import lib.common.render_utils as util
import torch
import numpy as np
from PIL import Image
from tqdm import tqdm
import cv2
import math
from termcolor import colored
def image2vid(images, vid_path):
w, h = images[0].size
videodims = (w, h)
fourcc = cv2.VideoWriter_fourcc(*'XVID')
video = cv2.VideoWriter(vid_path, fourcc, 30, videodims)
for image in images:
video.write(cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR))
video.release()
def query_color(verts, faces, image, device):
"""query colors from points and image
Args:
verts ([B, 3]): [query verts]
faces ([M, 3]): [query faces]
image ([B, 3, H, W]): [full image]
Returns:
[np.float]: [return colors]
"""
verts = verts.float().to(device)
faces = faces.long().to(device)
(xy, z) = verts.split([2, 1], dim=1)
visibility = get_visibility(xy, z, faces[:, [0, 2, 1]]).flatten()
uv = xy.unsqueeze(0).unsqueeze(2) # [B, N, 2]
uv = uv * torch.tensor([1.0, -1.0]).type_as(uv)
colors = (torch.nn.functional.grid_sample(image, uv, align_corners=True)[
0, :, :, 0].permute(1, 0) + 1.0) * 0.5 * 255.0
colors[visibility == 0.0] = ((Meshes(verts.unsqueeze(0), faces.unsqueeze(
0)).verts_normals_padded().squeeze(0) + 1.0) * 0.5 * 255.0)[visibility == 0.0]
return colors.detach().cpu()
class cleanShader(torch.nn.Module):
def __init__(self, device="cpu", cameras=None, blend_params=None):
super().__init__()
self.cameras = cameras
self.blend_params = blend_params if blend_params is not None else BlendParams()
def forward(self, fragments, meshes, **kwargs):
cameras = kwargs.get("cameras", self.cameras)
if cameras is None:
msg = "Cameras must be specified either at initialization \
or in the forward pass of TexturedSoftPhongShader"
raise ValueError(msg)
# get renderer output
blend_params = kwargs.get("blend_params", self.blend_params)
texels = meshes.sample_textures(fragments)
images = blending.softmax_rgb_blend(
texels, fragments, blend_params, znear=-256, zfar=256
)
return images
class Render:
def __init__(self, size=512, device=torch.device("cuda:0")):
self.device = device
self.mesh_y_center = 100.0
self.dis = 100.0
self.scale = 1.0
self.size = size
self.cam_pos = [(0, 100, 100)]
self.mesh = None
self.deform_mesh = None
self.pcd = None
self.renderer = None
self.meshRas = None
self.type = None
self.knn = None
self.knn_inverse = None
self.smpl_seg = None
self.smpl_cmap = None
self.smplx = SMPLX()
self.uv_rasterizer = util.Pytorch3dRasterizer(self.size)
def get_camera(self, cam_id):
R, T = look_at_view_transform(
eye=[self.cam_pos[cam_id]],
at=((0, self.mesh_y_center, 0),),
up=((0, 1, 0),),
)
camera = FoVOrthographicCameras(
device=self.device,
R=R,
T=T,
znear=100.0,
zfar=-100.0,
max_y=100.0,
min_y=-100.0,
max_x=100.0,
min_x=-100.0,
scale_xyz=(self.scale * np.ones(3),),
)
return camera
def init_renderer(self, camera, type="clean_mesh", bg="gray"):
if "mesh" in type:
# rasterizer
self.raster_settings_mesh = RasterizationSettings(
image_size=self.size,
blur_radius=np.log(1.0 / 1e-4) * 1e-7,
faces_per_pixel=30,
)
self.meshRas = MeshRasterizer(
cameras=camera, raster_settings=self.raster_settings_mesh
)
if bg == "black":
blendparam = BlendParams(1e-4, 1e-4, (0.0, 0.0, 0.0))
elif bg == "white":
blendparam = BlendParams(1e-4, 1e-8, (1.0, 1.0, 1.0))
elif bg == "gray":
blendparam = BlendParams(1e-4, 1e-8, (0.5, 0.5, 0.5))
if type == "ori_mesh":
lights = PointLights(
device=self.device,
ambient_color=((0.8, 0.8, 0.8),),
diffuse_color=((0.2, 0.2, 0.2),),
specular_color=((0.0, 0.0, 0.0),),
location=[[0.0, 200.0, 0.0]],
)
self.renderer = MeshRenderer(
rasterizer=self.meshRas,
shader=SoftPhongShader(
device=self.device,
cameras=camera,
lights=lights,
blend_params=blendparam,
),
)
if type == "silhouette":
self.raster_settings_silhouette = RasterizationSettings(
image_size=self.size,
blur_radius=np.log(1.0 / 1e-4 - 1.0) * 5e-5,
faces_per_pixel=50,
cull_backfaces=True,
)
self.silhouetteRas = MeshRasterizer(
cameras=camera, raster_settings=self.raster_settings_silhouette
)
self.renderer = MeshRenderer(
rasterizer=self.silhouetteRas, shader=SoftSilhouetteShader()
)
if type == "pointcloud":
self.raster_settings_pcd = PointsRasterizationSettings(
image_size=self.size, radius=0.006, points_per_pixel=10
)
self.pcdRas = PointsRasterizer(
cameras=camera, raster_settings=self.raster_settings_pcd
)
self.renderer = PointsRenderer(
rasterizer=self.pcdRas,
compositor=AlphaCompositor(background_color=(0, 0, 0)),
)
if type == "clean_mesh":
self.renderer = MeshRenderer(
rasterizer=self.meshRas,
shader=cleanShader(
device=self.device, cameras=camera, blend_params=blendparam
),
)
def VF2Mesh(self, verts, faces):
if not torch.is_tensor(verts):
verts = torch.tensor(verts)
if not torch.is_tensor(faces):
faces = torch.tensor(faces)
if verts.ndimension() == 2:
verts = verts.unsqueeze(0).float()
if faces.ndimension() == 2:
faces = faces.unsqueeze(0).long()
verts = verts.to(self.device)
faces = faces.to(self.device)
mesh = Meshes(verts, faces).to(self.device)
mesh.textures = TexturesVertex(
verts_features=(mesh.verts_normals_padded() + 1.0) * 0.5
)
return mesh
def load_meshes(self, verts, faces):
"""load mesh into the pytorch3d renderer
Args:
verts ([N,3]): verts
faces ([N,3]): faces
offset ([N,3]): offset
"""
# camera setting
self.scale = 100.0
self.mesh_y_center = 0.0
self.cam_pos = [
(0, self.mesh_y_center, 100.0),
(100.0, self.mesh_y_center, 0),
(0, self.mesh_y_center, -100.0),
(-100.0, self.mesh_y_center, 0),
]
self.type = "color"
if isinstance(verts, list):
self.meshes = []
for V, F in zip(verts, faces):
self.meshes.append(self.VF2Mesh(V, F))
else:
self.meshes = [self.VF2Mesh(verts, faces)]
def get_depth_map(self, cam_ids=[0, 2]):
depth_maps = []
for cam_id in cam_ids:
self.init_renderer(self.get_camera(cam_id), "clean_mesh", "gray")
fragments = self.meshRas(self.meshes[0])
depth_map = fragments.zbuf[..., 0].squeeze(0)
if cam_id == 2:
depth_map = torch.fliplr(depth_map)
depth_maps.append(depth_map)
return depth_maps
def get_rgb_image(self, cam_ids=[0, 2]):
images = []
for cam_id in range(len(self.cam_pos)):
if cam_id in cam_ids:
self.init_renderer(self.get_camera(
cam_id), "clean_mesh", "gray")
if len(cam_ids) == 4:
rendered_img = (
self.renderer(self.meshes[0])[
0:1, :, :, :3].permute(0, 3, 1, 2)
- 0.5
) * 2.0
else:
rendered_img = (
self.renderer(self.meshes[0])[
0:1, :, :, :3].permute(0, 3, 1, 2)
- 0.5
) * 2.0
if cam_id == 2 and len(cam_ids) == 2:
rendered_img = torch.flip(rendered_img, dims=[3])
images.append(rendered_img)
return images
def get_rendered_video(self, images, save_path):
tmp_path = save_path.replace('cloth', 'tmp')
self.cam_pos = []
for angle in range(0, 360, 3):
self.cam_pos.append(
(
100.0 * math.cos(np.pi / 180 * angle),
self.mesh_y_center,
100.0 * math.sin(np.pi / 180 * angle),
)
)
old_shape = np.array(images[0].shape[:2])
new_shape = np.around(
(self.size / old_shape[0]) * old_shape).astype(np.int)
fourcc = cv2.VideoWriter_fourcc(*"mp4v")
video = cv2.VideoWriter(
tmp_path, fourcc, 30, (self.size * len(self.meshes) +
new_shape[1] * len(images), self.size)
)
pbar = tqdm(range(len(self.cam_pos)))
pbar.set_description(colored(f"exporting video {os.path.basename(save_path)}...", "blue"))
for cam_id in pbar:
self.init_renderer(self.get_camera(cam_id), "clean_mesh", "gray")
img_lst = [
np.array(Image.fromarray(img).resize(new_shape[::-1])).astype(np.uint8)[
:, :, [2, 1, 0]
]
for img in images
]
for mesh in self.meshes:
rendered_img = (
(self.renderer(mesh)[0, :, :, :3] * 255.0)
.detach()
.cpu()
.numpy()
.astype(np.uint8)
)
img_lst.append(rendered_img)
final_img = np.concatenate(img_lst, axis=1)
video.write(final_img)
video.release()
os.system(f'ffmpeg -y -loglevel quiet -stats -i {tmp_path} -c:v libx264 {save_path}')
def get_silhouette_image(self, cam_ids=[0, 2]):
images = []
for cam_id in range(len(self.cam_pos)):
if cam_id in cam_ids:
self.init_renderer(self.get_camera(cam_id), "silhouette")
rendered_img = self.renderer(self.meshes[0])[0:1, :, :, 3]
if cam_id == 2 and len(cam_ids) == 2:
rendered_img = torch.flip(rendered_img, dims=[2])
images.append(rendered_img)
return images