ICON / lib /pymaf /models /maf_extractor.py
Yuliang's picture
init
162943d
raw
history blame
5.31 kB
# This script is borrowed and extended from https://github.com/shunsukesaito/PIFu/blob/master/lib/model/SurfaceClassifier.py
from packaging import version
import torch
import scipy
import os
import numpy as np
import torch.nn as nn
import torch.nn.functional as F
from lib.common.config import cfg
from lib.pymaf.utils.geometry import projection
import logging
logger = logging.getLogger(__name__)
class MAF_Extractor(nn.Module):
''' Mesh-aligned Feature Extrator
As discussed in the paper, we extract mesh-aligned features based on 2D projection of the mesh vertices.
The features extrated from spatial feature maps will go through a MLP for dimension reduction.
'''
def __init__(self, device=torch.device('cuda')):
super().__init__()
self.device = device
self.filters = []
self.num_views = 1
filter_channels = cfg.MODEL.PyMAF.MLP_DIM
self.last_op = nn.ReLU(True)
for l in range(0, len(filter_channels) - 1):
if 0 != l:
self.filters.append(
nn.Conv1d(filter_channels[l] + filter_channels[0],
filter_channels[l + 1], 1))
else:
self.filters.append(
nn.Conv1d(filter_channels[l], filter_channels[l + 1], 1))
self.add_module("conv%d" % l, self.filters[l])
self.im_feat = None
self.cam = None
# downsample SMPL mesh and assign part labels
# from https://github.com/nkolot/GraphCMR/blob/master/data/mesh_downsampling.npz
mesh_downsampling_path = os.path.join(
os.path.dirname(__file__),
"../../../data/pymaf_data/mesh_downsampling.npz")
smpl_mesh_graph = np.load(mesh_downsampling_path,
allow_pickle=True,
encoding='latin1')
A = smpl_mesh_graph['A']
U = smpl_mesh_graph['U']
D = smpl_mesh_graph['D'] # shape: (2,)
# downsampling
ptD = []
for i in range(len(D)):
d = scipy.sparse.coo_matrix(D[i])
i = torch.LongTensor(np.array([d.row, d.col]))
v = torch.FloatTensor(d.data)
ptD.append(torch.sparse.FloatTensor(i, v, d.shape))
# downsampling mapping from 6890 points to 431 points
# ptD[0].to_dense() - Size: [1723, 6890]
# ptD[1].to_dense() - Size: [431. 1723]
Dmap = torch.matmul(ptD[1].to_dense(),
ptD[0].to_dense()) # 6890 -> 431
self.register_buffer('Dmap', Dmap)
def reduce_dim(self, feature):
'''
Dimension reduction by multi-layer perceptrons
:param feature: list of [B, C_s, N] point-wise features before dimension reduction
:return: [B, C_p x N] concatantion of point-wise features after dimension reduction
'''
y = feature
tmpy = feature
for i, f in enumerate(self.filters):
y = self._modules['conv' +
str(i)](y if i == 0 else torch.cat([y, tmpy], 1))
if i != len(self.filters) - 1:
y = F.leaky_relu(y)
if self.num_views > 1 and i == len(self.filters) // 2:
y = y.view(-1, self.num_views, y.shape[1],
y.shape[2]).mean(dim=1)
tmpy = feature.view(-1, self.num_views, feature.shape[1],
feature.shape[2]).mean(dim=1)
y = self.last_op(y)
y = y.view(y.shape[0], -1)
return y
def sampling(self, points, im_feat=None, z_feat=None):
'''
Given 2D points, sample the point-wise features for each point,
the dimension of point-wise features will be reduced from C_s to C_p by MLP.
Image features should be pre-computed before this call.
:param points: [B, N, 2] image coordinates of points
:im_feat: [B, C_s, H_s, W_s] spatial feature maps
:return: [B, C_p x N] concatantion of point-wise features after dimension reduction
'''
if im_feat is None:
im_feat = self.im_feat
batch_size = im_feat.shape[0]
if version.parse(torch.__version__) >= version.parse('1.3.0'):
# Default grid_sample behavior has changed to align_corners=False since 1.3.0.
point_feat = torch.nn.functional.grid_sample(
im_feat, points.unsqueeze(2), align_corners=True)[..., 0]
else:
point_feat = torch.nn.functional.grid_sample(
im_feat, points.unsqueeze(2))[..., 0]
mesh_align_feat = self.reduce_dim(point_feat)
return mesh_align_feat
def forward(self, p, s_feat=None, cam=None, **kwargs):
''' Returns mesh-aligned features for the 3D mesh points.
Args:
p (tensor): [B, N_m, 3] mesh vertices
s_feat (tensor): [B, C_s, H_s, W_s] spatial feature maps
cam (tensor): [B, 3] camera
Return:
mesh_align_feat (tensor): [B, C_p x N_m] mesh-aligned features
'''
if cam is None:
cam = self.cam
p_proj_2d = projection(p, cam, retain_z=False)
mesh_align_feat = self.sampling(p_proj_2d, s_feat)
return mesh_align_feat