Spaces:
Runtime error
Runtime error
| """ | |
| This file contains functions that are used to perform data augmentation. | |
| """ | |
| import cv2 | |
| import numpy as np | |
| import skimage.transform | |
| import torch | |
| from PIL import Image | |
| from lib.pymafx.core import constants | |
| def get_transform(center, scale, res, rot=0): | |
| """Generate transformation matrix.""" | |
| h = 200 * scale | |
| t = np.zeros((3, 3)) | |
| t[0, 0] = float(res[1]) / h | |
| t[1, 1] = float(res[0]) / h | |
| t[0, 2] = res[1] * (-float(center[0]) / h + .5) | |
| t[1, 2] = res[0] * (-float(center[1]) / h + .5) | |
| t[2, 2] = 1 | |
| if not rot == 0: | |
| t = np.dot(get_rot_transf(res, rot), t) | |
| return t | |
| def get_rot_transf(res, rot): | |
| """Generate rotation transformation matrix.""" | |
| if rot == 0: | |
| return np.identity(3) | |
| rot = -rot # To match direction of rotation from cropping | |
| rot_mat = np.zeros((3, 3)) | |
| rot_rad = rot * np.pi / 180 | |
| sn, cs = np.sin(rot_rad), np.cos(rot_rad) | |
| rot_mat[0, :2] = [cs, -sn] | |
| rot_mat[1, :2] = [sn, cs] | |
| rot_mat[2, 2] = 1 | |
| # Need to rotate around center | |
| t_mat = np.eye(3) | |
| t_mat[0, 2] = -res[1] / 2 | |
| t_mat[1, 2] = -res[0] / 2 | |
| t_inv = t_mat.copy() | |
| t_inv[:2, 2] *= -1 | |
| rot_transf = np.dot(t_inv, np.dot(rot_mat, t_mat)) | |
| return rot_transf | |
| def transform(pt, center, scale, res, invert=0, rot=0): | |
| """Transform pixel location to different reference.""" | |
| t = get_transform(center, scale, res, rot=rot) | |
| if invert: | |
| t = np.linalg.inv(t) | |
| new_pt = np.array([pt[0] - 1, pt[1] - 1, 1.]).T | |
| new_pt = np.dot(t, new_pt) | |
| return new_pt[:2].astype(int) + 1 | |
| def transform_pts(coords, center, scale, res, invert=0, rot=0): | |
| """Transform coordinates (N x 2) to different reference.""" | |
| new_coords = coords.copy() | |
| for p in range(coords.shape[0]): | |
| new_coords[p, 0:2] = transform(coords[p, 0:2], center, scale, res, invert, rot) | |
| return new_coords | |
| def crop(img, center, scale, res, rot=0): | |
| """Crop image according to the supplied bounding box.""" | |
| # Upper left point | |
| ul = np.array(transform([1, 1], center, scale, res, invert=1)) - 1 | |
| # Bottom right point | |
| br = np.array(transform([res[0] + 1, res[1] + 1], center, scale, res, invert=1)) - 1 | |
| # Padding so that when rotated proper amount of context is included | |
| pad = int(np.linalg.norm(br - ul) / 2 - float(br[1] - ul[1]) / 2) | |
| if not rot == 0: | |
| ul -= pad | |
| br += pad | |
| new_shape = [br[1] - ul[1], br[0] - ul[0]] | |
| if len(img.shape) > 2: | |
| new_shape += [img.shape[2]] | |
| new_img = np.zeros(new_shape) | |
| # Range to fill new array | |
| new_x = max(0, -ul[0]), min(br[0], len(img[0])) - ul[0] | |
| new_y = max(0, -ul[1]), min(br[1], len(img)) - ul[1] | |
| # Range to sample from original image | |
| old_x = max(0, ul[0]), min(len(img[0]), br[0]) | |
| old_y = max(0, ul[1]), min(len(img), br[1]) | |
| new_img[new_y[0]:new_y[1], new_x[0]:new_x[1]] = img[old_y[0]:old_y[1], old_x[0]:old_x[1]] | |
| if not rot == 0: | |
| # Remove padding | |
| new_img = skimage.transform.rotate(new_img, rot).astype(np.uint8) | |
| new_img = new_img[pad:-pad, pad:-pad] | |
| new_img_resized = np.array(Image.fromarray(new_img.astype(np.uint8)).resize(res)) | |
| return new_img_resized, new_img, new_shape | |
| def uncrop(img, center, scale, orig_shape, rot=0, is_rgb=True): | |
| """'Undo' the image cropping/resizing. | |
| This function is used when evaluating mask/part segmentation. | |
| """ | |
| res = img.shape[:2] | |
| # Upper left point | |
| ul = np.array(transform([1, 1], center, scale, res, invert=1)) - 1 | |
| # Bottom right point | |
| br = np.array(transform([res[0] + 1, res[1] + 1], center, scale, res, invert=1)) - 1 | |
| # size of cropped image | |
| crop_shape = [br[1] - ul[1], br[0] - ul[0]] | |
| new_shape = [br[1] - ul[1], br[0] - ul[0]] | |
| if len(img.shape) > 2: | |
| new_shape += [img.shape[2]] | |
| new_img = np.zeros(orig_shape, dtype=np.uint8) | |
| # Range to fill new array | |
| new_x = max(0, -ul[0]), min(br[0], orig_shape[1]) - ul[0] | |
| new_y = max(0, -ul[1]), min(br[1], orig_shape[0]) - ul[1] | |
| # Range to sample from original image | |
| old_x = max(0, ul[0]), min(orig_shape[1], br[0]) | |
| old_y = max(0, ul[1]), min(orig_shape[0], br[1]) | |
| img = np.array(Image.fromarray(img.astype(np.uint8)).resize(crop_shape)) | |
| new_img[old_y[0]:old_y[1], old_x[0]:old_x[1]] = img[new_y[0]:new_y[1], new_x[0]:new_x[1]] | |
| return new_img | |
| def rot_aa(aa, rot): | |
| """Rotate axis angle parameters.""" | |
| # pose parameters | |
| R = np.array([[np.cos(np.deg2rad(-rot)), -np.sin(np.deg2rad(-rot)), 0], | |
| [np.sin(np.deg2rad(-rot)), np.cos(np.deg2rad(-rot)), 0], [0, 0, 1]]) | |
| # find the rotation of the body in camera frame | |
| per_rdg, _ = cv2.Rodrigues(aa) | |
| # apply the global rotation to the global orientation | |
| resrot, _ = cv2.Rodrigues(np.dot(R, per_rdg)) | |
| aa = (resrot.T)[0] | |
| return aa | |
| def flip_img(img): | |
| """Flip rgb images or masks. | |
| channels come last, e.g. (256,256,3). | |
| """ | |
| img = np.fliplr(img) | |
| return img | |
| def flip_kp(kp, is_smpl=False, type='body'): | |
| """Flip keypoints.""" | |
| assert type in ['body', 'hand', 'face', 'feet'] | |
| if type == 'body': | |
| if len(kp) == 24: | |
| if is_smpl: | |
| flipped_parts = constants.SMPL_JOINTS_FLIP_PERM | |
| else: | |
| flipped_parts = constants.J24_FLIP_PERM | |
| elif len(kp) == 49: | |
| if is_smpl: | |
| flipped_parts = constants.SMPL_J49_FLIP_PERM | |
| else: | |
| flipped_parts = constants.J49_FLIP_PERM | |
| elif type == 'hand': | |
| if len(kp) == 21: | |
| flipped_parts = constants.SINGLE_HAND_FLIP_PERM | |
| elif len(kp) == 42: | |
| flipped_parts = constants.LRHAND_FLIP_PERM | |
| elif type == 'face': | |
| flipped_parts = constants.FACE_FLIP_PERM | |
| elif type == 'feet': | |
| flipped_parts = constants.FEEF_FLIP_PERM | |
| kp = kp[flipped_parts] | |
| kp[:, 0] = -kp[:, 0] | |
| return kp | |
| def flip_pose(pose): | |
| """Flip pose. | |
| The flipping is based on SMPL parameters. | |
| """ | |
| flipped_parts = constants.SMPL_POSE_FLIP_PERM | |
| pose = pose[flipped_parts] | |
| # we also negate the second and the third dimension of the axis-angle | |
| pose[1::3] = -pose[1::3] | |
| pose[2::3] = -pose[2::3] | |
| return pose | |
| def flip_aa(pose): | |
| """Flip aa. | |
| """ | |
| # we also negate the second and the third dimension of the axis-angle | |
| if len(pose.shape) == 1: | |
| pose[1::3] = -pose[1::3] | |
| pose[2::3] = -pose[2::3] | |
| elif len(pose.shape) == 2: | |
| pose[:, 1::3] = -pose[:, 1::3] | |
| pose[:, 2::3] = -pose[:, 2::3] | |
| else: | |
| raise NotImplementedError | |
| return pose | |
| def normalize_2d_kp(kp_2d, crop_size=224, inv=False): | |
| # Normalize keypoints between -1, 1 | |
| if not inv: | |
| ratio = 1.0 / crop_size | |
| kp_2d = 2.0 * kp_2d * ratio - 1.0 | |
| else: | |
| ratio = 1.0 / crop_size | |
| kp_2d = (kp_2d + 1.0) / (2 * ratio) | |
| return kp_2d | |
| def j2d_processing(kp, transf): | |
| """Process gt 2D keypoints and apply transforms.""" | |
| # nparts = kp.shape[1] | |
| bs, npart = kp.shape[:2] | |
| kp_pad = torch.cat([kp, torch.ones((bs, npart, 1)).to(kp)], dim=-1) | |
| kp_new = torch.bmm(transf, kp_pad.transpose(1, 2)) | |
| kp_new = kp_new.transpose(1, 2) | |
| kp_new[:, :, :-1] = 2. * kp_new[:, :, :-1] / constants.IMG_RES - 1. | |
| return kp_new[:, :, :2] | |
| def generate_heatmap(joints, heatmap_size, sigma=1, joints_vis=None): | |
| ''' | |
| param joints: [num_joints, 3] | |
| param joints_vis: [num_joints, 3] | |
| return: target, target_weight(1: visible, 0: invisible) | |
| ''' | |
| num_joints = joints.shape[0] | |
| device = joints.device | |
| cur_device = torch.device(device.type, device.index) | |
| if not hasattr(heatmap_size, '__len__'): | |
| # width height | |
| heatmap_size = [heatmap_size, heatmap_size] | |
| assert len(heatmap_size) == 2 | |
| target_weight = np.ones((num_joints, 1), dtype=np.float32) | |
| if joints_vis is not None: | |
| target_weight[:, 0] = joints_vis[:, 0] | |
| target = torch.zeros((num_joints, heatmap_size[1], heatmap_size[0]), | |
| dtype=torch.float32, | |
| device=cur_device) | |
| tmp_size = sigma * 3 | |
| for joint_id in range(num_joints): | |
| mu_x = int(joints[joint_id][0] * heatmap_size[0] + 0.5) | |
| mu_y = int(joints[joint_id][1] * heatmap_size[1] + 0.5) | |
| # Check that any part of the gaussian is in-bounds | |
| ul = [int(mu_x - tmp_size), int(mu_y - tmp_size)] | |
| br = [int(mu_x + tmp_size + 1), int(mu_y + tmp_size + 1)] | |
| if ul[0] >= heatmap_size[0] or ul[1] >= heatmap_size[1] \ | |
| or br[0] < 0 or br[1] < 0: | |
| # If not, just return the image as is | |
| target_weight[joint_id] = 0 | |
| continue | |
| # # Generate gaussian | |
| size = 2 * tmp_size + 1 | |
| # x = np.arange(0, size, 1, np.float32) | |
| # y = x[:, np.newaxis] | |
| # x0 = y0 = size // 2 | |
| # # The gaussian is not normalized, we want the center value to equal 1 | |
| # g = np.exp(- ((x - x0) ** 2 + (y - y0) ** 2) / (2 * sigma ** 2)) | |
| # g = torch.from_numpy(g.astype(np.float32)) | |
| x = torch.arange(0, size, dtype=torch.float32, device=cur_device) | |
| y = x.unsqueeze(-1) | |
| x0 = y0 = size // 2 | |
| # The gaussian is not normalized, we want the center value to equal 1 | |
| g = torch.exp(-((x - x0)**2 + (y - y0)**2) / (2 * sigma**2)) | |
| # Usable gaussian range | |
| g_x = max(0, -ul[0]), min(br[0], heatmap_size[0]) - ul[0] | |
| g_y = max(0, -ul[1]), min(br[1], heatmap_size[1]) - ul[1] | |
| # Image range | |
| img_x = max(0, ul[0]), min(br[0], heatmap_size[0]) | |
| img_y = max(0, ul[1]), min(br[1], heatmap_size[1]) | |
| v = target_weight[joint_id] | |
| if v > 0.5: | |
| target[joint_id][img_y[0]:img_y[1], img_x[0]:img_x[1]] = \ | |
| g[g_y[0]:g_y[1], g_x[0]:g_x[1]] | |
| return target, target_weight | |