Spaces:
Sleeping
Sleeping
4kasha
commited on
Commit
·
74e96d7
1
Parent(s):
a35c33f
init
Browse files- README.md +2 -2
- app.py +133 -0
- requirements.txt +3 -0
README.md
CHANGED
@@ -1,7 +1,7 @@
|
|
1 |
---
|
2 |
title: Percolation
|
3 |
-
emoji:
|
4 |
-
colorFrom:
|
5 |
colorTo: gray
|
6 |
sdk: gradio
|
7 |
sdk_version: 5.6.0
|
|
|
1 |
---
|
2 |
title: Percolation
|
3 |
+
emoji: 🧱
|
4 |
+
colorFrom: blue
|
5 |
colorTo: gray
|
6 |
sdk: gradio
|
7 |
sdk_version: 5.6.0
|
app.py
ADDED
@@ -0,0 +1,133 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import numpy as np
|
3 |
+
import matplotlib.pyplot as plt
|
4 |
+
import time
|
5 |
+
from scipy.ndimage import label
|
6 |
+
|
7 |
+
|
8 |
+
def create_initial_plot(grid_size):
|
9 |
+
grid = np.zeros((grid_size, grid_size))
|
10 |
+
fig = plt.figure(figsize=(15, 6))
|
11 |
+
grid_ax = fig.add_subplot(121)
|
12 |
+
graph_ax = fig.add_subplot(122)
|
13 |
+
|
14 |
+
grid_ax.imshow(grid, cmap='Greys', alpha=0.3)
|
15 |
+
grid_ax.set_title(
|
16 |
+
f'Site Occupation Probability p = 0.00\n'
|
17 |
+
f'Largest Cluster Ratio = 0.000'
|
18 |
+
)
|
19 |
+
|
20 |
+
graph_ax.plot([0], [0], '-b', label='Largest Cluster Size')
|
21 |
+
graph_ax.set_xlabel('Occupation Probability p')
|
22 |
+
graph_ax.set_ylabel('Largest Cluster Size Ratio')
|
23 |
+
graph_ax.set_title('Phase Transition in 2D Percolation')
|
24 |
+
graph_ax.grid(True)
|
25 |
+
graph_ax.legend()
|
26 |
+
graph_ax.set_xlim(0, 1)
|
27 |
+
graph_ax.set_ylim(0, 1)
|
28 |
+
|
29 |
+
plt.tight_layout()
|
30 |
+
return fig
|
31 |
+
|
32 |
+
def get_largest_cluster(grid):
|
33 |
+
labeled_array, num_features = label(grid)
|
34 |
+
if num_features == 0:
|
35 |
+
return np.zeros_like(grid), 0
|
36 |
+
|
37 |
+
sizes = [np.sum(labeled_array == i) for i in range(1, num_features + 1)]
|
38 |
+
if not sizes:
|
39 |
+
return np.zeros_like(grid), 0
|
40 |
+
|
41 |
+
max_cluster_index = np.argmax(sizes) + 1
|
42 |
+
max_cluster_mask = labeled_array == max_cluster_index
|
43 |
+
max_cluster_size = sizes[max_cluster_index - 1]
|
44 |
+
|
45 |
+
return max_cluster_mask, max_cluster_size
|
46 |
+
|
47 |
+
def run_percolation_simulation(grid_size):
|
48 |
+
p_step = 0.02
|
49 |
+
fine_step = 0.01
|
50 |
+
|
51 |
+
p1 = np.arange(0, 0.56, p_step)
|
52 |
+
p2 = np.arange(0.56, 0.60 + fine_step, fine_step)
|
53 |
+
p3 = np.arange(0.60 + p_step, 1.0 + p_step, p_step)
|
54 |
+
steps = np.concatenate((p1, p2, p3))
|
55 |
+
|
56 |
+
p_values = []
|
57 |
+
largest_clusters = []
|
58 |
+
|
59 |
+
fig = plt.figure(figsize=(15, 6))
|
60 |
+
grid_ax = fig.add_subplot(121)
|
61 |
+
graph_ax = fig.add_subplot(122)
|
62 |
+
|
63 |
+
np.random.seed(3407)
|
64 |
+
for p in steps:
|
65 |
+
grid = np.random.random((grid_size, grid_size)) < p
|
66 |
+
largest_cluster_mask, largest_cluster_size = get_largest_cluster(grid)
|
67 |
+
largest_cluster_ratio = largest_cluster_size / (grid_size * grid_size)
|
68 |
+
|
69 |
+
p_values.append(p)
|
70 |
+
largest_clusters.append(largest_cluster_ratio)
|
71 |
+
|
72 |
+
grid_ax.clear()
|
73 |
+
graph_ax.clear()
|
74 |
+
|
75 |
+
grid_ax.imshow(grid, cmap='Greys', alpha=0.3)
|
76 |
+
grid_ax.imshow(largest_cluster_mask, cmap='Blues', alpha=0.7)
|
77 |
+
|
78 |
+
grid_ax.set_title(
|
79 |
+
f'Site Occupation Probability p = {p:.2f}\n'
|
80 |
+
f'Largest Cluster Ratio = {largest_cluster_ratio:.3f}'
|
81 |
+
)
|
82 |
+
|
83 |
+
graph_ax.plot(p_values, largest_clusters, '-b', label='Largest Cluster Size')
|
84 |
+
graph_ax.set_xlabel('Occupation Probability p')
|
85 |
+
graph_ax.set_ylabel('Largest Cluster Size Ratio')
|
86 |
+
graph_ax.set_title('Phase Transition in 2D Percolation')
|
87 |
+
graph_ax.grid(True)
|
88 |
+
graph_ax.legend()
|
89 |
+
graph_ax.set_xlim(0, 1)
|
90 |
+
graph_ax.set_ylim(0, 1)
|
91 |
+
|
92 |
+
plt.tight_layout()
|
93 |
+
|
94 |
+
yield fig
|
95 |
+
|
96 |
+
time.sleep(0.25)
|
97 |
+
|
98 |
+
with gr.Blocks() as demo:
|
99 |
+
gr.Markdown("# 2D Site Percolation Simulation")
|
100 |
+
gr.Markdown("""
|
101 |
+
This simulation shows the formation of clusters in a 2D percolation system as the occupation probability increases.
|
102 |
+
Watch how the system undergoes a phase transition around p ≈ 0.593 (critical point).
|
103 |
+
|
104 |
+
- Gray dots: Occupied sites
|
105 |
+
- Blue region: Largest connected cluster
|
106 |
+
""")
|
107 |
+
|
108 |
+
with gr.Row():
|
109 |
+
plot = gr.Plot(value=create_initial_plot(50))
|
110 |
+
with gr.Row():
|
111 |
+
grid_size = gr.Slider(
|
112 |
+
minimum=20, maximum=200, step=10, value=150,
|
113 |
+
label="Grid Size", info="Size of the simulation grid"
|
114 |
+
)
|
115 |
+
with gr.Row():
|
116 |
+
start_btn = gr.Button("Start Simulation")
|
117 |
+
|
118 |
+
start_btn.click(
|
119 |
+
fn=run_percolation_simulation,
|
120 |
+
inputs=[grid_size],
|
121 |
+
outputs=plot,
|
122 |
+
show_progress=False
|
123 |
+
)
|
124 |
+
grid_size.change(
|
125 |
+
fn=create_initial_plot,
|
126 |
+
inputs=[grid_size],
|
127 |
+
outputs=plot
|
128 |
+
)
|
129 |
+
|
130 |
+
if __name__ == "__main__":
|
131 |
+
demo.queue().launch(
|
132 |
+
debug=True
|
133 |
+
)
|
requirements.txt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
matplotlib==3.8.0
|
2 |
+
numpy==1.26.4
|
3 |
+
scipy==1.13.1
|