|
|
|
|
|
|
|
__all__ = ['plt', 'categories', 'image', 'label', 'examples', 'enable_queue', 'intf', 'classify_image'] |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""import pathlib""" |
|
import fastbook |
|
import gradio as gr |
|
import nbdev |
|
import time |
|
import os |
|
import pipreqs |
|
import nbconvert |
|
fastbook.setup_book() |
|
|
|
"""from pathlib import Path""" |
|
""" |
|
plt = os.platform |
|
print(plt) |
|
|
|
if plt == 'Posix': pathlib.PosixPath = pathlib.PosixPath |
|
if plt == 'Windows': pathlib.PosixPath = pathlib.WindowsPath |
|
posix_backup = pathlib.PurePosixPath |
|
try: |
|
pathlib.PosixPath = pathlib.WindowsPath |
|
finally: |
|
pathlib.PurePosixPath = posix_backup |
|
""" |
|
|
|
from fastbook import * |
|
from fastai.vision.widgets import * |
|
from fastai.vision.all import * |
|
from fastai.vision.all import * |
|
from time import sleep |
|
from fastcore.net import urljson, HTTPError |
|
|
|
from contextlib import contextmanager |
|
"""import pathlib |
|
|
|
@contextmanager |
|
def set_posix_windows(): |
|
posix_backup = pathlib.PosixPath |
|
try: |
|
pathlib.PosixPath = pathlib.WindowsPath |
|
yield |
|
finally: |
|
pathlib.PosixPath = posix_backup |
|
""" |
|
|
|
|
|
|
|
"""with open(os.path.join('./export.pkl'), 'rb') as f: |
|
f.read()""" |
|
import pathlib |
|
plt = platform.system() |
|
print(plt) |
|
print(pathlib.PosixPath) |
|
if plt == 'Windows': |
|
pathlib.PosixPath = pathlib.WindowsPath |
|
learn_inf = load_learner(os.path.join('./export.pkl'), 'rb') |
|
else: |
|
pathlib.WindowsPath = pathlib.PosixPath |
|
learn_inf = load_learner('export.pkl') |
|
|
|
|
|
|
|
categories = learn_inf.dls.vocab |
|
|
|
def classify_image(img): |
|
pred,pred_idx,probs = learn_inf.predict(img) |
|
return dict(zip(categories,map(float,probs))) |
|
|
|
|
|
|
|
|
|
|
|
image = gr.inputs.Image(shape=(224,224)) |
|
label = gr.outputs.Label(num_top_classes=3) |
|
examples = ['./Barack Obama.jpg','./Donald Trump.jpg','./William J. Clinton.jpg','./Joe Biden.jpg','./George W. Bush.jpg'] |
|
|
|
|
|
intf = gr.Interface(fn=classify_image, inputs=image, outputs=label, examples=examples) |
|
intf.launch() |
|
|
|
|