mayuema commited on
Commit
0754e7d
1 Parent(s): d2dd1cd

first release

Browse files
FollowYourPose DELETED
@@ -1 +0,0 @@
1
- Subproject commit 40a333f7f1e3940903916c419b725a4a17f348a1
 
 
FollowYourPose/.gitignore ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ /checkpoints
3
+
4
+ /data
5
+
6
+ /sim_matrix
7
+
8
+ /figs
9
+
10
+ /log
11
+
12
+
13
+ *.log
14
+
15
+ *.sh
16
+
17
+ *.pth
18
+
19
+ *.jpg
20
+
21
+ *.og
22
+
23
+ /logs
24
+
25
+ /stable_diffusion.egg-info
26
+
27
+ /__pycache__
28
+
29
+ /outputs
30
+
31
+ *.pyc
32
+
33
+ /models
34
+
35
+ *.ckpt
36
+
37
+ /src
38
+
39
+ /newsd_weight
40
+
41
+ *.yaml
42
+
43
+ *.png
44
+
45
+ *.yaml
46
+
47
+ *.txt
48
+
49
+ /data
50
+
51
+ /others
FollowYourPose/followyourpose/data/hdvila.py ADDED
@@ -0,0 +1,245 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # import os
2
+ # import random
3
+ # from abc import abstractmethod
4
+ # import math
5
+ # import pandas as pd
6
+ # import av
7
+ # import cv2
8
+ # import decord
9
+ # import numpy as np
10
+ # import torch
11
+ # from PIL import Image
12
+ # from torch.utils.data import Dataset
13
+ # from torchvision import transforms
14
+ # from decord import VideoReader, cpu
15
+ # import torchvision.transforms._transforms_video as transforms_video
16
+ # from torchvision.transforms.functional import to_tensor
17
+ # from collections import OrderedDict
18
+ # import time
19
+ # import csv
20
+
21
+ # class HDVilaDataset(Dataset):
22
+ # """
23
+ # HDVila Dataset.
24
+ # Assumes webvid data is structured as follows.
25
+ # HDVila/
26
+ # part_N/ # 0-10
27
+ # video_clips/ ($page_dir)
28
+ # 1.mp4 (videoid.mp4)
29
+ # ...
30
+ # 5000.mp4
31
+ # ...
32
+ # """
33
+ # def __init__(self,
34
+ # video_path,
35
+ # width=512,
36
+ # height=512,
37
+ # n_sample_frames=8,
38
+ # dataset_set="train",
39
+ # prompt=None,
40
+ # sample_frame_rate=2,
41
+ # sample_start_idx=0,
42
+ # accelerator=None,
43
+ # ):
44
+
45
+ # try:
46
+ # host_gpu_num = accelerator.num_processes
47
+ # host_num = 1
48
+ # all_rank = host_gpu_num * host_num
49
+ # global_rank = accelerator.local_process_index
50
+ # except:
51
+ # pass
52
+ # print('dataset rank:', global_rank, ' / ',all_rank, ' ')
53
+
54
+ # self.data_dir = '/apdcephfs_cq3/share_1290939/0_public_datasets/hd-vila-100m'
55
+ # if dataset_set=='train':
56
+ # self.text_name = 'caption_rm2048_train.csv'
57
+ # else:
58
+ # self.text_name = 'caption_2048_val_new.csv'
59
+ # self.meta_path = os.path.join(self.data_dir, self.text_name)
60
+ # # text_name = 'caption_2048_val_new.csv'
61
+
62
+ # spatial_transform = 'resize_center_crop'
63
+ # resolution=width
64
+ # load_raw_resolution=True
65
+ # # frame_stride=2
66
+ # video_length= n_sample_frames
67
+ # fps_max=None
68
+ # load_resize_keep_ratio=False
69
+
70
+
71
+
72
+ # self.global_rank = global_rank
73
+ # self.all_rank = all_rank
74
+ # # self.subsample = subsample
75
+ # self.video_length = video_length
76
+ # self.resolution = [resolution, resolution] if isinstance(resolution, int) else resolution
77
+ # self.frame_stride = sample_frame_rate
78
+ # self.load_raw_resolution = load_raw_resolution
79
+ # self.fps_max = fps_max
80
+ # self.load_resize_keep_ratio = load_resize_keep_ratio
81
+ # print('start load meta data')
82
+ # self._load_metadata()
83
+ # print('load meta data done!!!')
84
+ # if spatial_transform is not None:
85
+ # if spatial_transform == "random_crop":
86
+ # self.spatial_transform = transforms_video.RandomCropVideo(crop_resolution)
87
+ # elif spatial_transform == "resize_center_crop":
88
+ # assert(self.resolution[0] == self.resolution[1])
89
+ # self.spatial_transform = transforms.Compose([
90
+ # transforms.Resize(resolution),
91
+ # transforms_video.CenterCropVideo(resolution),
92
+ # ])
93
+ # elif spatial_transform == "center_crop":
94
+ # self.spatial_transform = transforms_video.CenterCropVideo(resolution)
95
+ # else:
96
+ # raise NotImplementedError
97
+ # else:
98
+ # self.spatial_transform = None
99
+
100
+ # def _load_metadata(self):
101
+ # # clip_id frame_id caption
102
+ # last_clip_id = ''
103
+ # self.metadata = []
104
+ # start_time = time.time()
105
+ # caption_path = self.meta_path
106
+ # count=-1
107
+ # total_count = 8854264 #8856312 - 2048
108
+
109
+ # with open(caption_path, 'r',encoding="utf-8") as csvfile: #41s
110
+ # reader = csv.DictReader(csvfile)
111
+ # for row in reader:
112
+ # if row['clip_id'] != last_clip_id:
113
+ # count+=1
114
+ # if count >= (total_count // self.all_rank)*self.all_rank: # drop last
115
+ # break
116
+ # last_clip_id = row['clip_id']
117
+ # if count % self.all_rank == self.global_rank:
118
+ # self.metadata.append([('%02d'%int(row['part_id']))+row['clip_id']])
119
+ # self.metadata[-1].append([row['caption']])
120
+ # else:
121
+ # if count % self.all_rank == self.global_rank:
122
+ # self.metadata[-1][-1].append(row['caption'])
123
+ # # caption_data = pd.read_csv(caption_path) # use time 26+264s
124
+
125
+ # # for index,row in caption_data.iterrows():
126
+ # # if row['clip_id'] != last_clip_id:
127
+ # # last_clip_id = row['clip_id']
128
+ # # meta_data[('%02d'%part_id)+row['clip_id']] = [row['caption']]
129
+ # # else:
130
+ # # meta_data[('%02d'%part_id)+row['clip_id']].append(row['caption'])
131
+ # end_time = time.time()
132
+ # print('load %d - %d items use time: %.1f;' % (len(self.metadata), count, end_time-start_time))
133
+ # # self.metadata=meta_data
134
+
135
+
136
+ # def _get_video_path(self, sample):
137
+ # part_id = int(sample[0][:2])
138
+ # clip_id = sample[0][2:]
139
+ # video_path = os.path.join(self.data_dir,'part_%d' % part_id, 'video_clips', clip_id)
140
+ # return video_path
141
+
142
+ # def __getitem__(self, index):
143
+ # while True:
144
+
145
+ # index = index % len(self.metadata)
146
+ # sample = self.metadata[index]
147
+ # video_path = self._get_video_path(sample)
148
+
149
+ # try:
150
+ # if self.load_raw_resolution:
151
+ # video_reader = VideoReader(video_path, ctx=cpu(0))
152
+ # elif self.load_resize_keep_ratio:
153
+ # # resize scale is according to the short side
154
+ # h, w, c = VideoReader(video_path, ctx=cpu(0))[0].shape
155
+ # if h < w:
156
+ # scale = h / self.resolution[0]
157
+ # else:
158
+ # scale = w / self.resolution[1]
159
+
160
+ # h = math.ceil(h / scale)
161
+ # w = math.ceil(w / scale)
162
+ # video_reader = VideoReader(video_path, ctx=cpu(0), width=w, height=h)
163
+ # else:
164
+ # video_reader = VideoReader(video_path, ctx=cpu(0), width=self.resolution[1], height=self.resolution[0])
165
+ # if len(video_reader) < self.video_length:
166
+ # print(f"video length ({len(video_reader)}) is smaller than target length({self.video_length})")
167
+ # index += 1
168
+ # continue
169
+ # else:
170
+ # pass
171
+ # except:
172
+ # index += 1
173
+ # print(f"Load video failed! path = {video_path}")
174
+ # continue
175
+ # fps_ori = video_reader.get_avg_fps()
176
+
177
+ # fs = self.frame_stride
178
+ # allf = len(video_reader)
179
+ # if self.frame_stride != 1:
180
+ # all_frames = list(range(0, len(video_reader), self.frame_stride))
181
+ # if len(all_frames) < self.video_length:
182
+ # fs = len(video_reader) // self.video_length
183
+ # assert(fs != 0)
184
+ # all_frames = list(range(0, len(video_reader), fs))
185
+ # else:
186
+ # all_frames = list(range(len(video_reader)))
187
+
188
+ # # select a random clip
189
+ # rand_idx = random.randint(0, len(all_frames) - self.video_length)
190
+ # frame_indices = all_frames[rand_idx:rand_idx+self.video_length]
191
+ # try:
192
+ # frames = video_reader.get_batch(frame_indices)
193
+ # break
194
+ # except:
195
+ # print(f"Get frames failed! path = {video_path}")
196
+ # index += 1
197
+ # continue
198
+
199
+ # assert(frames.shape[0] == self.video_length),f'{len(frames)}, self.video_length={self.video_length}'
200
+ # frames = torch.tensor(frames.asnumpy()).permute(3, 0, 1, 2).float() # [t,h,w,c] -> [c,t,h,w]
201
+
202
+ # if self.spatial_transform is not None:
203
+ # frames = self.spatial_transform(frames)
204
+ # assert(frames.shape[2] == self.resolution[0] and frames.shape[3] == self.resolution[1]), f'frames={frames.shape}, self.resolution={self.resolution}'
205
+ # frames = frames.byte()
206
+ # # fps
207
+ # fps_clip = fps_ori // self.frame_stride
208
+ # if self.fps_max is not None and fps_clip > self.fps_max:
209
+ # fps_clip = self.fps_max
210
+
211
+ # # caption index
212
+ # middle_idx = (rand_idx + self.video_length /2 )*fs
213
+ # big_cap_idx = (middle_idx // 64 +1) *64
214
+ # small_cap_idx = (middle_idx // 64) *64
215
+ # if big_cap_idx >= allf or ((big_cap_idx-middle_idx) >= (small_cap_idx-middle_idx)):
216
+ # cap_idx = small_cap_idx
217
+ # else:
218
+ # cap_idx = big_cap_idx
219
+ # # print(middle_idx, small_cap_idx, big_cap_idx,cap_idx)
220
+ # caption = sample[1][int(cap_idx//64)]
221
+
222
+ # frames = frames.permute(1,0,2,3)
223
+ # skeleton_final = torch.zeros_like(frames).byte()
224
+ # frames = (frames / 127.5 - 1.0)
225
+ # skeleton_final = (skeleton_final / 127.5 - 1.0)
226
+ # example = {'pixel_values': frames, 'sentence': caption, 'pose': skeleton_final}
227
+
228
+
229
+
230
+ # return example
231
+
232
+ # def __len__(self):
233
+ # return len(self.metadata)
234
+ # # return 1
235
+
236
+
237
+ # if __name__ == '__main__':
238
+ # if True: # val
239
+ # hd_data = HDVila('/apdcephfs_cq3/share_1290939/0_public_datasets/hd-vila-100m','/apdcephfs_cq3/share_1290939/0_public_datasets/hd-vila-100m/caption_2048_val.csv')
240
+ # else:
241
+ # hd_data = HDVila('/apdcephfs_cq3/share_1290939/0_public_datasets/hd-vila-100m','/apdcephfs_cq3/share_1290939/0_public_datasets/hd-vila-100m/caption_rm2048_train.csv')
242
+ # print(len(hd_data))
243
+ # for i in range(len(hd_data)):
244
+ # # print(i)
245
+ # hd_data[i]
FollowYourPose/followyourpose/models/attention.py ADDED
@@ -0,0 +1,375 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Adapted from https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention.py
2
+
3
+ from dataclasses import dataclass
4
+ from typing import Optional
5
+
6
+ import torch
7
+ import torch.nn.functional as F
8
+ from torch import nn
9
+
10
+ from diffusers.configuration_utils import ConfigMixin, register_to_config
11
+ from diffusers.modeling_utils import ModelMixin
12
+ from diffusers.utils import BaseOutput
13
+ from diffusers.utils.import_utils import is_xformers_available
14
+ from diffusers.models.attention import CrossAttention, FeedForward, AdaLayerNorm
15
+
16
+ from einops import rearrange, repeat
17
+
18
+
19
+ @dataclass
20
+ class Transformer3DModelOutput(BaseOutput):
21
+ sample: torch.FloatTensor
22
+
23
+
24
+ if is_xformers_available():
25
+ import xformers
26
+ import xformers.ops
27
+ else:
28
+ xformers = None
29
+
30
+
31
+ class Transformer3DModel(ModelMixin, ConfigMixin):
32
+ @register_to_config
33
+ def __init__(
34
+ self,
35
+ num_attention_heads: int = 16,
36
+ attention_head_dim: int = 88,
37
+ in_channels: Optional[int] = None,
38
+ num_layers: int = 1,
39
+ dropout: float = 0.0,
40
+ norm_num_groups: int = 32,
41
+ cross_attention_dim: Optional[int] = None,
42
+ attention_bias: bool = False,
43
+ activation_fn: str = "geglu",
44
+ num_embeds_ada_norm: Optional[int] = None,
45
+ use_linear_projection: bool = False,
46
+ only_cross_attention: bool = False,
47
+ upcast_attention: bool = False,
48
+ ):
49
+ super().__init__()
50
+ self.use_linear_projection = use_linear_projection
51
+ self.num_attention_heads = num_attention_heads
52
+ self.attention_head_dim = attention_head_dim
53
+ inner_dim = num_attention_heads * attention_head_dim
54
+
55
+ # Define input layers
56
+ self.in_channels = in_channels
57
+
58
+ self.norm = torch.nn.GroupNorm(num_groups=norm_num_groups, num_channels=in_channels, eps=1e-6, affine=True)
59
+ if use_linear_projection:
60
+ self.proj_in = nn.Linear(in_channels, inner_dim)
61
+ else:
62
+ self.proj_in = nn.Conv2d(in_channels, inner_dim, kernel_size=1, stride=1, padding=0)
63
+
64
+ # Define transformers blocks
65
+ self.transformer_blocks = nn.ModuleList(
66
+ [
67
+ BasicTransformerBlock(
68
+ inner_dim,
69
+ num_attention_heads,
70
+ attention_head_dim,
71
+ dropout=dropout,
72
+ cross_attention_dim=cross_attention_dim,
73
+ activation_fn=activation_fn,
74
+ num_embeds_ada_norm=num_embeds_ada_norm,
75
+ attention_bias=attention_bias,
76
+ only_cross_attention=only_cross_attention,
77
+ upcast_attention=upcast_attention,
78
+ )
79
+ for d in range(num_layers)
80
+ ]
81
+ )
82
+
83
+ # 4. Define output layers
84
+ if use_linear_projection:
85
+ self.proj_out = nn.Linear(in_channels, inner_dim)
86
+ else:
87
+ self.proj_out = nn.Conv2d(inner_dim, in_channels, kernel_size=1, stride=1, padding=0)
88
+
89
+ def forward(self, hidden_states, encoder_hidden_states=None, timestep=None, return_dict: bool = True):
90
+ # Input
91
+ assert hidden_states.dim() == 5, f"Expected hidden_states to have ndim=5, but got ndim={hidden_states.dim()}."
92
+ video_length = hidden_states.shape[2]
93
+ hidden_states = rearrange(hidden_states, "b c f h w -> (b f) c h w")
94
+ encoder_hidden_states = repeat(encoder_hidden_states, 'b n c -> (b f) n c', f=video_length)
95
+
96
+ batch, channel, height, weight = hidden_states.shape
97
+ residual = hidden_states
98
+
99
+ hidden_states = self.norm(hidden_states)
100
+ if not self.use_linear_projection:
101
+ hidden_states = self.proj_in(hidden_states)
102
+ inner_dim = hidden_states.shape[1]
103
+ hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(batch, height * weight, inner_dim)
104
+ else:
105
+ inner_dim = hidden_states.shape[1]
106
+ hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(batch, height * weight, inner_dim)
107
+ hidden_states = self.proj_in(hidden_states)
108
+
109
+ # Blocks
110
+ for block in self.transformer_blocks:
111
+ hidden_states = block(
112
+ hidden_states,
113
+ encoder_hidden_states=encoder_hidden_states,
114
+ timestep=timestep,
115
+ video_length=video_length
116
+ )
117
+
118
+ # Output
119
+ if not self.use_linear_projection:
120
+ hidden_states = (
121
+ hidden_states.reshape(batch, height, weight, inner_dim).permute(0, 3, 1, 2).contiguous()
122
+ )
123
+ hidden_states = self.proj_out(hidden_states)
124
+ else:
125
+ hidden_states = self.proj_out(hidden_states)
126
+ hidden_states = (
127
+ hidden_states.reshape(batch, height, weight, inner_dim).permute(0, 3, 1, 2).contiguous()
128
+ )
129
+
130
+ output = hidden_states + residual
131
+
132
+ output = rearrange(output, "(b f) c h w -> b c f h w", f=video_length)
133
+ if not return_dict:
134
+ return (output,)
135
+
136
+ return Transformer3DModelOutput(sample=output)
137
+
138
+
139
+ class BasicTransformerBlock(nn.Module):
140
+ def __init__(
141
+ self,
142
+ dim: int,
143
+ num_attention_heads: int,
144
+ attention_head_dim: int,
145
+ dropout=0.0,
146
+ cross_attention_dim: Optional[int] = None,
147
+ activation_fn: str = "geglu",
148
+ num_embeds_ada_norm: Optional[int] = None,
149
+ attention_bias: bool = False,
150
+ only_cross_attention: bool = False,
151
+ upcast_attention: bool = False,
152
+ ):
153
+ super().__init__()
154
+ self.only_cross_attention = only_cross_attention
155
+ self.use_ada_layer_norm = num_embeds_ada_norm is not None
156
+
157
+ # SC-Attn
158
+ self.attn1 = SparseCausalAttention(
159
+ query_dim=dim,
160
+ heads=num_attention_heads,
161
+ dim_head=attention_head_dim,
162
+ dropout=dropout,
163
+ bias=attention_bias,
164
+ cross_attention_dim=cross_attention_dim if only_cross_attention else None,
165
+ upcast_attention=upcast_attention,
166
+ )
167
+ self.norm1 = AdaLayerNorm(dim, num_embeds_ada_norm) if self.use_ada_layer_norm else nn.LayerNorm(dim)
168
+
169
+ # Cross-Attn
170
+ if cross_attention_dim is not None:
171
+ self.attn2 = CrossAttention(
172
+ query_dim=dim,
173
+ cross_attention_dim=cross_attention_dim,
174
+ heads=num_attention_heads,
175
+ dim_head=attention_head_dim,
176
+ dropout=dropout,
177
+ bias=attention_bias,
178
+ upcast_attention=upcast_attention,
179
+ )
180
+ else:
181
+ self.attn2 = None
182
+
183
+ if cross_attention_dim is not None:
184
+ self.norm2 = AdaLayerNorm(dim, num_embeds_ada_norm) if self.use_ada_layer_norm else nn.LayerNorm(dim)
185
+ else:
186
+ self.norm2 = None
187
+
188
+ # Feed-forward
189
+ self.ff = FeedForward(dim, dropout=dropout, activation_fn=activation_fn)
190
+ self.norm3 = nn.LayerNorm(dim)
191
+
192
+ # Temp-Attn
193
+ self.attn_temp = CrossAttention(
194
+ query_dim=dim,
195
+ heads=num_attention_heads,
196
+ dim_head=attention_head_dim,
197
+ dropout=dropout,
198
+ bias=attention_bias,
199
+ upcast_attention=upcast_attention,
200
+ )
201
+ # nn.init.zeros_(self.attn_temp.to_out[0].weight.data)
202
+ self.norm_temp = AdaLayerNorm(dim, num_embeds_ada_norm) if self.use_ada_layer_norm else nn.LayerNorm(dim)
203
+
204
+ self.conv_temporal = LoRALinearLayer(dim, dim, rank=160, stride=1)
205
+
206
+ def set_use_memory_efficient_attention_xformers(self, use_memory_efficient_attention_xformers: bool):
207
+ if not is_xformers_available():
208
+ print("Here is how to install it")
209
+ raise ModuleNotFoundError(
210
+ "Refer to https://github.com/facebookresearch/xformers for more information on how to install"
211
+ " xformers",
212
+ name="xformers",
213
+ )
214
+ elif not torch.cuda.is_available():
215
+ raise ValueError(
216
+ "torch.cuda.is_available() should be True but is False. xformers' memory efficient attention is only"
217
+ " available for GPU "
218
+ )
219
+ else:
220
+ try:
221
+ # Make sure we can run the memory efficient attention
222
+ _ = xformers.ops.memory_efficient_attention(
223
+ torch.randn((1, 2, 40), device="cuda"),
224
+ torch.randn((1, 2, 40), device="cuda"),
225
+ torch.randn((1, 2, 40), device="cuda"),
226
+ )
227
+ except Exception as e:
228
+ raise e
229
+ self.attn1._use_memory_efficient_attention_xformers = use_memory_efficient_attention_xformers
230
+ if self.attn2 is not None:
231
+ self.attn2._use_memory_efficient_attention_xformers = use_memory_efficient_attention_xformers
232
+ # self.attn_temp._use_memory_efficient_attention_xformers = use_memory_efficient_attention_xformers
233
+
234
+ def forward(self, hidden_states, encoder_hidden_states=None, timestep=None, attention_mask=None, video_length=None):
235
+ # SparseCausal-Attention
236
+ norm_hidden_states = (
237
+ self.norm1(hidden_states, timestep) if self.use_ada_layer_norm else self.norm1(hidden_states)
238
+ )
239
+
240
+ if self.only_cross_attention:
241
+ hidden_states = (
242
+ self.attn1(norm_hidden_states, encoder_hidden_states, attention_mask=attention_mask) + hidden_states
243
+ )
244
+ else:
245
+ hidden_states = self.attn1(norm_hidden_states, attention_mask=attention_mask, video_length=video_length) + hidden_states
246
+
247
+ if self.attn2 is not None:
248
+ # Cross-Attention
249
+ norm_hidden_states = (
250
+ self.norm2(hidden_states, timestep) if self.use_ada_layer_norm else self.norm2(hidden_states)
251
+ )
252
+ hidden_states = (
253
+ self.attn2(
254
+ norm_hidden_states, encoder_hidden_states=encoder_hidden_states, attention_mask=attention_mask
255
+ )
256
+ + hidden_states
257
+ )
258
+
259
+ # Feed-forward
260
+ hidden_states = self.ff(self.norm3(hidden_states)) + hidden_states
261
+
262
+ # Temporal-Attention
263
+ d = hidden_states.shape[1]
264
+ hidden_states = rearrange(hidden_states, "(b f) d c -> (b d) f c", f=video_length)
265
+ norm_hidden_states = (
266
+ self.norm_temp(hidden_states, timestep) if self.use_ada_layer_norm else self.norm_temp(hidden_states)
267
+ )
268
+ hidden_states = self.attn_temp(norm_hidden_states) + hidden_states
269
+ hidden_states = rearrange(hidden_states, "(b d) f c -> (b f) d c", d=d)
270
+
271
+
272
+ hidden_states = rearrange(hidden_states, "(b f) d c -> (b d) c f", d=d, f=video_length)
273
+ hidden_states = self.conv_temporal(hidden_states)
274
+ hidden_states = rearrange(hidden_states, "(b d) c f -> (b f) d c", d=d, f=video_length)
275
+
276
+ return hidden_states
277
+
278
+
279
+
280
+
281
+ class LoRALinearLayer(nn.Module):
282
+ def __init__(self, in_features, out_features, rank=4, stride=1):
283
+ super().__init__()
284
+
285
+ if rank > min(in_features, out_features):
286
+ Warning(f"LoRA rank {rank} must be less or equal than {min(in_features, out_features)}, reset to {min(in_features, out_features)//2}")
287
+ rank = min(in_features, out_features)//2
288
+
289
+
290
+ self.down = nn.Conv1d(in_features, rank, bias=False,
291
+ kernel_size=3,
292
+ stride = stride,
293
+ padding=1,)
294
+ self.up = nn.Conv1d(rank, out_features, bias=False,
295
+ kernel_size=3,
296
+ padding=1,)
297
+
298
+ nn.init.normal_(self.down.weight, std=1 / rank)
299
+ # nn.init.zeros_(self.down.bias.data)
300
+
301
+ nn.init.zeros_(self.up.weight)
302
+ # nn.init.zeros_(self.up.bias.data)
303
+ if stride > 1:
304
+ self.skip = nn.AvgPool1d(kernel_size=3, stride=2, padding=1)
305
+
306
+ def forward(self, hidden_states):
307
+ orig_dtype = hidden_states.dtype
308
+ dtype = self.down.weight.dtype
309
+
310
+ down_hidden_states = self.down(hidden_states.to(dtype))
311
+ up_hidden_states = self.up(down_hidden_states)
312
+ if hasattr(self, 'skip'):
313
+ hidden_states=self.skip(hidden_states)
314
+ return up_hidden_states.to(orig_dtype)+hidden_states
315
+
316
+
317
+
318
+
319
+ class SparseCausalAttention(CrossAttention):
320
+ def forward(self, hidden_states, encoder_hidden_states=None, attention_mask=None, video_length=None):
321
+ batch_size, sequence_length, _ = hidden_states.shape
322
+
323
+ encoder_hidden_states = encoder_hidden_states
324
+
325
+ if self.group_norm is not None:
326
+ hidden_states = self.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
327
+
328
+ query = self.to_q(hidden_states)
329
+ dim = query.shape[-1]
330
+ query = self.reshape_heads_to_batch_dim(query)
331
+
332
+ if self.added_kv_proj_dim is not None:
333
+ raise NotImplementedError
334
+
335
+ encoder_hidden_states = encoder_hidden_states if encoder_hidden_states is not None else hidden_states
336
+ key = self.to_k(encoder_hidden_states)
337
+ value = self.to_v(encoder_hidden_states)
338
+
339
+ former_frame_index = torch.arange(video_length) - 1
340
+ former_frame_index[0] = 0
341
+
342
+ key = rearrange(key, "(b f) d c -> b f d c", f=video_length)
343
+ key = torch.cat([key[:, [0] * video_length], key[:, former_frame_index]], dim=2)
344
+ key = rearrange(key, "b f d c -> (b f) d c")
345
+
346
+ value = rearrange(value, "(b f) d c -> b f d c", f=video_length)
347
+ value = torch.cat([value[:, [0] * video_length], value[:, former_frame_index]], dim=2)
348
+ value = rearrange(value, "b f d c -> (b f) d c")
349
+
350
+ key = self.reshape_heads_to_batch_dim(key)
351
+ value = self.reshape_heads_to_batch_dim(value)
352
+
353
+ if attention_mask is not None:
354
+ if attention_mask.shape[-1] != query.shape[1]:
355
+ target_length = query.shape[1]
356
+ attention_mask = F.pad(attention_mask, (0, target_length), value=0.0)
357
+ attention_mask = attention_mask.repeat_interleave(self.heads, dim=0)
358
+
359
+ # attention, what we cannot get enough of
360
+ if self._use_memory_efficient_attention_xformers:
361
+ hidden_states = self._memory_efficient_attention_xformers(query, key, value, attention_mask)
362
+ # Some versions of xformers return output in fp32, cast it back to the dtype of the input
363
+ hidden_states = hidden_states.to(query.dtype)
364
+ else:
365
+ if self._slice_size is None or query.shape[0] // self._slice_size == 1:
366
+ hidden_states = self._attention(query, key, value, attention_mask)
367
+ else:
368
+ hidden_states = self._sliced_attention(query, key, value, sequence_length, dim, attention_mask)
369
+
370
+ # linear proj
371
+ hidden_states = self.to_out[0](hidden_states)
372
+
373
+ # dropout
374
+ hidden_states = self.to_out[1](hidden_states)
375
+ return hidden_states
FollowYourPose/followyourpose/models/resnet.py ADDED
@@ -0,0 +1,209 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Adapted from https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/resnet.py
2
+
3
+ import torch
4
+ import torch.nn as nn
5
+ import torch.nn.functional as F
6
+
7
+ from einops import rearrange
8
+
9
+
10
+ class InflatedConv3d(nn.Conv2d):
11
+ def forward(self, x):
12
+ video_length = x.shape[2]
13
+
14
+ x = rearrange(x, "b c f h w -> (b f) c h w")
15
+ x = super().forward(x)
16
+ x = rearrange(x, "(b f) c h w -> b c f h w", f=video_length)
17
+
18
+ return x
19
+
20
+
21
+ class Upsample3D(nn.Module):
22
+ def __init__(self, channels, use_conv=False, use_conv_transpose=False, out_channels=None, name="conv"):
23
+ super().__init__()
24
+ self.channels = channels
25
+ self.out_channels = out_channels or channels
26
+ self.use_conv = use_conv
27
+ self.use_conv_transpose = use_conv_transpose
28
+ self.name = name
29
+
30
+ conv = None
31
+ if use_conv_transpose:
32
+ raise NotImplementedError
33
+ elif use_conv:
34
+ conv = InflatedConv3d(self.channels, self.out_channels, 3, padding=1)
35
+
36
+ if name == "conv":
37
+ self.conv = conv
38
+ else:
39
+ self.Conv2d_0 = conv
40
+
41
+ def forward(self, hidden_states, output_size=None):
42
+ assert hidden_states.shape[1] == self.channels
43
+
44
+ if self.use_conv_transpose:
45
+ raise NotImplementedError
46
+
47
+ # Cast to float32 to as 'upsample_nearest2d_out_frame' op does not support bfloat16
48
+ dtype = hidden_states.dtype
49
+ if dtype == torch.bfloat16:
50
+ hidden_states = hidden_states.to(torch.float32)
51
+
52
+ # upsample_nearest_nhwc fails with large batch sizes. see https://github.com/huggingface/diffusers/issues/984
53
+ if hidden_states.shape[0] >= 64:
54
+ hidden_states = hidden_states.contiguous()
55
+
56
+ # if `output_size` is passed we force the interpolation output
57
+ # size and do not make use of `scale_factor=2`
58
+ if output_size is None:
59
+ hidden_states = F.interpolate(hidden_states, scale_factor=[1.0, 2.0, 2.0], mode="nearest")
60
+ else:
61
+ hidden_states = F.interpolate(hidden_states, size=output_size, mode="nearest")
62
+
63
+ # If the input is bfloat16, we cast back to bfloat16
64
+ if dtype == torch.bfloat16:
65
+ hidden_states = hidden_states.to(dtype)
66
+
67
+ if self.use_conv:
68
+ if self.name == "conv":
69
+ hidden_states = self.conv(hidden_states)
70
+ else:
71
+ hidden_states = self.Conv2d_0(hidden_states)
72
+
73
+ return hidden_states
74
+
75
+
76
+ class Downsample3D(nn.Module):
77
+ def __init__(self, channels, use_conv=False, out_channels=None, padding=1, name="conv"):
78
+ super().__init__()
79
+ self.channels = channels
80
+ self.out_channels = out_channels or channels
81
+ self.use_conv = use_conv
82
+ self.padding = padding
83
+ stride = 2
84
+ self.name = name
85
+
86
+ if use_conv:
87
+ conv = InflatedConv3d(self.channels, self.out_channels, 3, stride=stride, padding=padding)
88
+ else:
89
+ raise NotImplementedError
90
+
91
+ if name == "conv":
92
+ self.Conv2d_0 = conv
93
+ self.conv = conv
94
+ elif name == "Conv2d_0":
95
+ self.conv = conv
96
+ else:
97
+ self.conv = conv
98
+
99
+ def forward(self, hidden_states):
100
+ assert hidden_states.shape[1] == self.channels
101
+ if self.use_conv and self.padding == 0:
102
+ raise NotImplementedError
103
+
104
+ assert hidden_states.shape[1] == self.channels
105
+ hidden_states = self.conv(hidden_states)
106
+
107
+ return hidden_states
108
+
109
+
110
+ class ResnetBlock3D(nn.Module):
111
+ def __init__(
112
+ self,
113
+ *,
114
+ in_channels,
115
+ out_channels=None,
116
+ conv_shortcut=False,
117
+ dropout=0.0,
118
+ temb_channels=512,
119
+ groups=32,
120
+ groups_out=None,
121
+ pre_norm=True,
122
+ eps=1e-6,
123
+ non_linearity="swish",
124
+ time_embedding_norm="default",
125
+ output_scale_factor=1.0,
126
+ use_in_shortcut=None,
127
+ ):
128
+ super().__init__()
129
+ self.pre_norm = pre_norm
130
+ self.pre_norm = True
131
+ self.in_channels = in_channels
132
+ out_channels = in_channels if out_channels is None else out_channels
133
+ self.out_channels = out_channels
134
+ self.use_conv_shortcut = conv_shortcut
135
+ self.time_embedding_norm = time_embedding_norm
136
+ self.output_scale_factor = output_scale_factor
137
+
138
+ if groups_out is None:
139
+ groups_out = groups
140
+
141
+ self.norm1 = torch.nn.GroupNorm(num_groups=groups, num_channels=in_channels, eps=eps, affine=True)
142
+
143
+ self.conv1 = InflatedConv3d(in_channels, out_channels, kernel_size=3, stride=1, padding=1)
144
+
145
+ if temb_channels is not None:
146
+ if self.time_embedding_norm == "default":
147
+ time_emb_proj_out_channels = out_channels
148
+ elif self.time_embedding_norm == "scale_shift":
149
+ time_emb_proj_out_channels = out_channels * 2
150
+ else:
151
+ raise ValueError(f"unknown time_embedding_norm : {self.time_embedding_norm} ")
152
+
153
+ self.time_emb_proj = torch.nn.Linear(temb_channels, time_emb_proj_out_channels)
154
+ else:
155
+ self.time_emb_proj = None
156
+
157
+ self.norm2 = torch.nn.GroupNorm(num_groups=groups_out, num_channels=out_channels, eps=eps, affine=True)
158
+ self.dropout = torch.nn.Dropout(dropout)
159
+ self.conv2 = InflatedConv3d(out_channels, out_channels, kernel_size=3, stride=1, padding=1)
160
+
161
+ if non_linearity == "swish":
162
+ self.nonlinearity = lambda x: F.silu(x)
163
+ elif non_linearity == "mish":
164
+ self.nonlinearity = Mish()
165
+ elif non_linearity == "silu":
166
+ self.nonlinearity = nn.SiLU()
167
+
168
+ self.use_in_shortcut = self.in_channels != self.out_channels if use_in_shortcut is None else use_in_shortcut
169
+
170
+ self.conv_shortcut = None
171
+ if self.use_in_shortcut:
172
+ self.conv_shortcut = InflatedConv3d(in_channels, out_channels, kernel_size=1, stride=1, padding=0)
173
+
174
+ def forward(self, input_tensor, temb):
175
+ hidden_states = input_tensor
176
+
177
+ hidden_states = self.norm1(hidden_states)
178
+ hidden_states = self.nonlinearity(hidden_states)
179
+
180
+ hidden_states = self.conv1(hidden_states)
181
+
182
+ if temb is not None:
183
+ temb = self.time_emb_proj(self.nonlinearity(temb))[:, :, None, None, None]
184
+
185
+ if temb is not None and self.time_embedding_norm == "default":
186
+ hidden_states = hidden_states + temb
187
+
188
+ hidden_states = self.norm2(hidden_states)
189
+
190
+ if temb is not None and self.time_embedding_norm == "scale_shift":
191
+ scale, shift = torch.chunk(temb, 2, dim=1)
192
+ hidden_states = hidden_states * (1 + scale) + shift
193
+
194
+ hidden_states = self.nonlinearity(hidden_states)
195
+
196
+ hidden_states = self.dropout(hidden_states)
197
+ hidden_states = self.conv2(hidden_states)
198
+
199
+ if self.conv_shortcut is not None:
200
+ input_tensor = self.conv_shortcut(input_tensor)
201
+
202
+ output_tensor = (input_tensor + hidden_states) / self.output_scale_factor
203
+
204
+ return output_tensor
205
+
206
+
207
+ class Mish(torch.nn.Module):
208
+ def forward(self, hidden_states):
209
+ return hidden_states * torch.tanh(torch.nn.functional.softplus(hidden_states))
FollowYourPose/followyourpose/models/unet.py ADDED
@@ -0,0 +1,571 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Adapted from https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/unet_2d_condition.py
2
+
3
+ from dataclasses import dataclass
4
+ from typing import List, Optional, Tuple, Union
5
+
6
+ import os
7
+ import json
8
+
9
+ import torch
10
+ import torch.nn as nn
11
+ import torch.utils.checkpoint
12
+
13
+ from diffusers.configuration_utils import ConfigMixin, register_to_config
14
+ from diffusers.modeling_utils import ModelMixin
15
+ from diffusers.utils import BaseOutput, logging
16
+ from diffusers.models.embeddings import TimestepEmbedding, Timesteps
17
+ from .unet_blocks import (
18
+ CrossAttnDownBlock3D,
19
+ CrossAttnUpBlock3D,
20
+ DownBlock3D,
21
+ UNetMidBlock3DCrossAttn,
22
+ UpBlock3D,
23
+ get_down_block,
24
+ get_up_block,
25
+ conv_nd,
26
+ avg_pool_nd,
27
+ )
28
+ from .resnet import InflatedConv3d
29
+ from einops import rearrange
30
+ import sys
31
+ sys.path.append('FollowYourPose')
32
+
33
+ logger = logging.get_logger(__name__) # pylint: disable=invalid-name
34
+
35
+
36
+ @dataclass
37
+ class UNet3DConditionOutput(BaseOutput):
38
+ sample: torch.FloatTensor
39
+
40
+
41
+ class UNet3DConditionModel(ModelMixin, ConfigMixin):
42
+ _supports_gradient_checkpointing = True
43
+
44
+ @register_to_config
45
+ def __init__(
46
+ self,
47
+ sample_size: Optional[int] = None,
48
+ in_channels: int = 4,
49
+ out_channels: int = 4,
50
+ center_input_sample: bool = False,
51
+ flip_sin_to_cos: bool = True,
52
+ freq_shift: int = 0,
53
+ down_block_types: Tuple[str] = (
54
+ "CrossAttnDownBlock3D",
55
+ "CrossAttnDownBlock3D",
56
+ "CrossAttnDownBlock3D",
57
+ "DownBlock3D",
58
+ ),
59
+ mid_block_type: str = "UNetMidBlock3DCrossAttn",
60
+ up_block_types: Tuple[str] = (
61
+ "UpBlock3D",
62
+ "CrossAttnUpBlock3D",
63
+ "CrossAttnUpBlock3D",
64
+ "CrossAttnUpBlock3D"
65
+ ),
66
+ only_cross_attention: Union[bool, Tuple[bool]] = False,
67
+ block_out_channels: Tuple[int] = (320, 640, 1280, 1280),
68
+ layers_per_block: int = 2,
69
+ downsample_padding: int = 1,
70
+ mid_block_scale_factor: float = 1,
71
+ act_fn: str = "silu",
72
+ norm_num_groups: int = 32,
73
+ norm_eps: float = 1e-5,
74
+ cross_attention_dim: int = 1280,
75
+ attention_head_dim: Union[int, Tuple[int]] = 8,
76
+ dual_cross_attention: bool = False,
77
+ use_linear_projection: bool = False,
78
+ class_embed_type: Optional[str] = None,
79
+ num_class_embeds: Optional[int] = None,
80
+ upcast_attention: bool = False,
81
+ resnet_time_scale_shift: str = "default",
82
+ ):
83
+ super().__init__()
84
+
85
+ self.sample_size = sample_size
86
+ time_embed_dim = block_out_channels[0] * 4
87
+
88
+ # input
89
+ self.conv_in = InflatedConv3d(in_channels, block_out_channels[0], kernel_size=3, padding=(1, 1))
90
+
91
+ # time
92
+ self.time_proj = Timesteps(block_out_channels[0], flip_sin_to_cos, freq_shift)
93
+ timestep_input_dim = block_out_channels[0]
94
+
95
+ self.time_embedding = TimestepEmbedding(timestep_input_dim, time_embed_dim)
96
+
97
+ # class embedding
98
+ if class_embed_type is None and num_class_embeds is not None:
99
+ self.class_embedding = nn.Embedding(num_class_embeds, time_embed_dim)
100
+ elif class_embed_type == "timestep":
101
+ self.class_embedding = TimestepEmbedding(timestep_input_dim, time_embed_dim)
102
+ elif class_embed_type == "identity":
103
+ self.class_embedding = nn.Identity(time_embed_dim, time_embed_dim)
104
+ else:
105
+ self.class_embedding = None
106
+
107
+ self.down_blocks = nn.ModuleList([])
108
+ self.mid_block = None
109
+ self.up_blocks = nn.ModuleList([])
110
+
111
+ if isinstance(only_cross_attention, bool):
112
+ only_cross_attention = [only_cross_attention] * len(down_block_types)
113
+
114
+ if isinstance(attention_head_dim, int):
115
+ attention_head_dim = (attention_head_dim,) * len(down_block_types)
116
+
117
+ # down
118
+ output_channel = block_out_channels[0]
119
+ for i, down_block_type in enumerate(down_block_types):
120
+ input_channel = output_channel
121
+ output_channel = block_out_channels[i]
122
+ is_final_block = i == len(block_out_channels) - 1
123
+
124
+ down_block = get_down_block(
125
+ down_block_type,
126
+ num_layers=layers_per_block,
127
+ in_channels=input_channel,
128
+ out_channels=output_channel,
129
+ temb_channels=time_embed_dim,
130
+ add_downsample=not is_final_block,
131
+ resnet_eps=norm_eps,
132
+ resnet_act_fn=act_fn,
133
+ resnet_groups=norm_num_groups,
134
+ cross_attention_dim=cross_attention_dim,
135
+ attn_num_head_channels=attention_head_dim[i],
136
+ downsample_padding=downsample_padding,
137
+ dual_cross_attention=dual_cross_attention,
138
+ use_linear_projection=use_linear_projection,
139
+ only_cross_attention=only_cross_attention[i],
140
+ upcast_attention=upcast_attention,
141
+ resnet_time_scale_shift=resnet_time_scale_shift,
142
+ )
143
+ self.down_blocks.append(down_block)
144
+
145
+ # mid
146
+ if mid_block_type == "UNetMidBlock3DCrossAttn":
147
+ self.mid_block = UNetMidBlock3DCrossAttn(
148
+ in_channels=block_out_channels[-1],
149
+ temb_channels=time_embed_dim,
150
+ resnet_eps=norm_eps,
151
+ resnet_act_fn=act_fn,
152
+ output_scale_factor=mid_block_scale_factor,
153
+ resnet_time_scale_shift=resnet_time_scale_shift,
154
+ cross_attention_dim=cross_attention_dim,
155
+ attn_num_head_channels=attention_head_dim[-1],
156
+ resnet_groups=norm_num_groups,
157
+ dual_cross_attention=dual_cross_attention,
158
+ use_linear_projection=use_linear_projection,
159
+ upcast_attention=upcast_attention,
160
+ )
161
+ else:
162
+ raise ValueError(f"unknown mid_block_type : {mid_block_type}")
163
+
164
+ # count how many layers upsample the videos
165
+ self.num_upsamplers = 0
166
+
167
+ # up
168
+ reversed_block_out_channels = list(reversed(block_out_channels))
169
+ reversed_attention_head_dim = list(reversed(attention_head_dim))
170
+ only_cross_attention = list(reversed(only_cross_attention))
171
+ output_channel = reversed_block_out_channels[0]
172
+ for i, up_block_type in enumerate(up_block_types):
173
+ is_final_block = i == len(block_out_channels) - 1
174
+
175
+ prev_output_channel = output_channel
176
+ output_channel = reversed_block_out_channels[i]
177
+ input_channel = reversed_block_out_channels[min(i + 1, len(block_out_channels) - 1)]
178
+
179
+ # add upsample block for all BUT final layer
180
+ if not is_final_block:
181
+ add_upsample = True
182
+ self.num_upsamplers += 1
183
+ else:
184
+ add_upsample = False
185
+
186
+ up_block = get_up_block(
187
+ up_block_type,
188
+ num_layers=layers_per_block + 1,
189
+ in_channels=input_channel,
190
+ out_channels=output_channel,
191
+ prev_output_channel=prev_output_channel,
192
+ temb_channels=time_embed_dim,
193
+ add_upsample=add_upsample,
194
+ resnet_eps=norm_eps,
195
+ resnet_act_fn=act_fn,
196
+ resnet_groups=norm_num_groups,
197
+ cross_attention_dim=cross_attention_dim,
198
+ attn_num_head_channels=reversed_attention_head_dim[i],
199
+ dual_cross_attention=dual_cross_attention,
200
+ use_linear_projection=use_linear_projection,
201
+ only_cross_attention=only_cross_attention[i],
202
+ upcast_attention=upcast_attention,
203
+ resnet_time_scale_shift=resnet_time_scale_shift,
204
+ )
205
+ self.up_blocks.append(up_block)
206
+ prev_output_channel = output_channel
207
+
208
+ # out
209
+ self.conv_norm_out = nn.GroupNorm(num_channels=block_out_channels[0], num_groups=norm_num_groups, eps=norm_eps)
210
+ self.conv_act = nn.SiLU()
211
+ self.conv_out = InflatedConv3d(block_out_channels[0], out_channels, kernel_size=3, padding=1)
212
+
213
+ self.skeleton_adapter = Adapter(cin=int(3*64), channels=[320, 640, 1280, 1280][:4], nums_rb=2, ksize=1, sk=True, use_conv=False)
214
+ adapter_weight = torch.load('./FollowYourPose/checkpoints/t2iadapter_keypose_sd14v1.pth')
215
+ self.skeleton_adapter.load_state_dict(adapter_weight)
216
+
217
+
218
+ def set_attention_slice(self, slice_size):
219
+ r"""
220
+ Enable sliced attention computation.
221
+
222
+ When this option is enabled, the attention module will split the input tensor in slices, to compute attention
223
+ in several steps. This is useful to save some memory in exchange for a small speed decrease.
224
+
225
+ Args:
226
+ slice_size (`str` or `int` or `list(int)`, *optional*, defaults to `"auto"`):
227
+ When `"auto"`, halves the input to the attention heads, so attention will be computed in two steps. If
228
+ `"max"`, maxium amount of memory will be saved by running only one slice at a time. If a number is
229
+ provided, uses as many slices as `attention_head_dim // slice_size`. In this case, `attention_head_dim`
230
+ must be a multiple of `slice_size`.
231
+ """
232
+ sliceable_head_dims = []
233
+
234
+ def fn_recursive_retrieve_slicable_dims(module: torch.nn.Module):
235
+ if hasattr(module, "set_attention_slice"):
236
+ sliceable_head_dims.append(module.sliceable_head_dim)
237
+
238
+ for child in module.children():
239
+ fn_recursive_retrieve_slicable_dims(child)
240
+
241
+ # retrieve number of attention layers
242
+ for module in self.children():
243
+ fn_recursive_retrieve_slicable_dims(module)
244
+
245
+ num_slicable_layers = len(sliceable_head_dims)
246
+
247
+ if slice_size == "auto":
248
+ # half the attention head size is usually a good trade-off between
249
+ # speed and memory
250
+ slice_size = [dim // 2 for dim in sliceable_head_dims]
251
+ elif slice_size == "max":
252
+ # make smallest slice possible
253
+ slice_size = num_slicable_layers * [1]
254
+
255
+ slice_size = num_slicable_layers * [slice_size] if not isinstance(slice_size, list) else slice_size
256
+
257
+ if len(slice_size) != len(sliceable_head_dims):
258
+ raise ValueError(
259
+ f"You have provided {len(slice_size)}, but {self.config} has {len(sliceable_head_dims)} different"
260
+ f" attention layers. Make sure to match `len(slice_size)` to be {len(sliceable_head_dims)}."
261
+ )
262
+
263
+ for i in range(len(slice_size)):
264
+ size = slice_size[i]
265
+ dim = sliceable_head_dims[i]
266
+ if size is not None and size > dim:
267
+ raise ValueError(f"size {size} has to be smaller or equal to {dim}.")
268
+
269
+ # Recursively walk through all the children.
270
+ # Any children which exposes the set_attention_slice method
271
+ # gets the message
272
+ def fn_recursive_set_attention_slice(module: torch.nn.Module, slice_size: List[int]):
273
+ if hasattr(module, "set_attention_slice"):
274
+ module.set_attention_slice(slice_size.pop())
275
+
276
+ for child in module.children():
277
+ fn_recursive_set_attention_slice(child, slice_size)
278
+
279
+ reversed_slice_size = list(reversed(slice_size))
280
+ for module in self.children():
281
+ fn_recursive_set_attention_slice(module, reversed_slice_size)
282
+
283
+ def _set_gradient_checkpointing(self, module, value=False):
284
+ if isinstance(module, (CrossAttnDownBlock3D, DownBlock3D, CrossAttnUpBlock3D, UpBlock3D)):
285
+ module.gradient_checkpointing = value
286
+
287
+ def forward(
288
+ self,
289
+ sample: torch.FloatTensor,
290
+ timestep: Union[torch.Tensor, float, int],
291
+ encoder_hidden_states: torch.Tensor,
292
+ class_labels: Optional[torch.Tensor] = None,
293
+ attention_mask: Optional[torch.Tensor] = None,
294
+ return_dict: bool = True,
295
+ skeleton: Optional[torch.FloatTensor] = None,
296
+ train_or_sample: str = 'train',
297
+ ) -> Union[UNet3DConditionOutput, Tuple]:
298
+ r"""
299
+ Args:
300
+ sample (`torch.FloatTensor`): (batch, channel, height, width) noisy inputs tensor
301
+ timestep (`torch.FloatTensor` or `float` or `int`): (batch) timesteps
302
+ encoder_hidden_states (`torch.FloatTensor`): (batch, sequence_length, feature_dim) encoder hidden states
303
+ return_dict (`bool`, *optional*, defaults to `True`):
304
+ Whether or not to return a [`models.unet_2d_condition.UNet2DConditionOutput`] instead of a plain tuple.
305
+
306
+ Returns:
307
+ [`~models.unet_2d_condition.UNet2DConditionOutput`] or `tuple`:
308
+ [`~models.unet_2d_condition.UNet2DConditionOutput`] if `return_dict` is True, otherwise a `tuple`. When
309
+ returning a tuple, the first element is the sample tensor.
310
+ """
311
+ # By default samples have to be AT least a multiple of the overall upsampling factor.
312
+ # The overall upsampling factor is equal to 2 ** (# num of upsampling layears).
313
+ # However, the upsampling interpolation output size can be forced to fit any upsampling size
314
+ # on the fly if necessary.
315
+ default_overall_up_factor = 2**self.num_upsamplers
316
+
317
+ # upsample size should be forwarded when sample is not a multiple of `default_overall_up_factor`
318
+ forward_upsample_size = False
319
+ upsample_size = None
320
+
321
+ if any(s % default_overall_up_factor != 0 for s in sample.shape[-2:]):
322
+ logger.info("Forward upsample size to force interpolation output size.")
323
+ forward_upsample_size = True
324
+
325
+ # prepare attention_mask
326
+ if attention_mask is not None:
327
+ attention_mask = (1 - attention_mask.to(sample.dtype)) * -10000.0
328
+ attention_mask = attention_mask.unsqueeze(1)
329
+
330
+ # center input if necessary
331
+ if self.config.center_input_sample:
332
+ sample = 2 * sample - 1.0
333
+
334
+ # time
335
+ timesteps = timestep
336
+ if not torch.is_tensor(timesteps):
337
+ # This would be a good case for the `match` statement (Python 3.10+)
338
+ is_mps = sample.device.type == "mps"
339
+ if isinstance(timestep, float):
340
+ dtype = torch.float32 if is_mps else torch.float64
341
+ else:
342
+ dtype = torch.int32 if is_mps else torch.int64
343
+ timesteps = torch.tensor([timesteps], dtype=dtype, device=sample.device)
344
+ elif len(timesteps.shape) == 0:
345
+ timesteps = timesteps[None].to(sample.device)
346
+
347
+ # broadcast to batch dimension in a way that's compatible with ONNX/Core ML
348
+ timesteps = timesteps.expand(sample.shape[0])
349
+
350
+ t_emb = self.time_proj(timesteps)
351
+
352
+ # timesteps does not contain any weights and will always return f32 tensors
353
+ # but time_embedding might actually be running in fp16. so we need to cast here.
354
+ # there might be better ways to encapsulate this.
355
+ t_emb = t_emb.to(dtype=self.dtype)
356
+ emb = self.time_embedding(t_emb)
357
+
358
+ if self.class_embedding is not None:
359
+ if class_labels is None:
360
+ raise ValueError("class_labels should be provided when num_class_embeds > 0")
361
+
362
+ if self.config.class_embed_type == "timestep":
363
+ class_labels = self.time_proj(class_labels)
364
+
365
+ class_emb = self.class_embedding(class_labels).to(dtype=self.dtype)
366
+ emb = emb + class_emb
367
+
368
+ # pre-process
369
+ sample = self.conv_in(sample)
370
+
371
+ # down
372
+ down_block_res_samples = (sample,)
373
+ features_adapter = self.skeleton_adapter(skeleton)
374
+
375
+ for idx, downsample_block in enumerate(self.down_blocks):
376
+
377
+ if train_or_sample == 'train':
378
+ skeleton_feature = None
379
+ else:
380
+ skeleton_feature = features_adapter[idx]
381
+
382
+ if hasattr(downsample_block, "has_cross_attention") and downsample_block.has_cross_attention:
383
+ sample, res_samples = downsample_block(
384
+ hidden_states=sample,
385
+ temb=emb,
386
+ encoder_hidden_states=encoder_hidden_states,
387
+ attention_mask=attention_mask,
388
+ features_adapter=skeleton_feature
389
+ )
390
+ else:
391
+ sample, res_samples = downsample_block(hidden_states=sample, temb=emb, features_adapter=skeleton_feature)
392
+
393
+ down_block_res_samples += res_samples
394
+
395
+ # mid
396
+ sample = self.mid_block(
397
+ sample, emb, encoder_hidden_states=encoder_hidden_states, attention_mask=attention_mask
398
+ )
399
+
400
+ # up
401
+ for i, upsample_block in enumerate(self.up_blocks):
402
+ is_final_block = i == len(self.up_blocks) - 1
403
+
404
+ res_samples = down_block_res_samples[-len(upsample_block.resnets) :]
405
+ down_block_res_samples = down_block_res_samples[: -len(upsample_block.resnets)]
406
+
407
+ # if we have not reached the final block and need to forward the
408
+ # upsample size, we do it here
409
+ if not is_final_block and forward_upsample_size:
410
+ upsample_size = down_block_res_samples[-1].shape[2:]
411
+
412
+ if hasattr(upsample_block, "has_cross_attention") and upsample_block.has_cross_attention:
413
+ sample = upsample_block(
414
+ hidden_states=sample,
415
+ temb=emb,
416
+ res_hidden_states_tuple=res_samples,
417
+ encoder_hidden_states=encoder_hidden_states,
418
+ upsample_size=upsample_size,
419
+ attention_mask=attention_mask,
420
+ )
421
+ else:
422
+ sample = upsample_block(
423
+ hidden_states=sample, temb=emb, res_hidden_states_tuple=res_samples, upsample_size=upsample_size
424
+ )
425
+ # post-process
426
+ sample = self.conv_norm_out(sample)
427
+ sample = self.conv_act(sample)
428
+ sample = self.conv_out(sample)
429
+
430
+ if not return_dict:
431
+ return (sample,)
432
+
433
+ return UNet3DConditionOutput(sample=sample)
434
+
435
+ @classmethod
436
+ def from_pretrained_2d(cls, pretrained_model_path, subfolder=None):
437
+ if subfolder is not None:
438
+ pretrained_model_path = os.path.join(pretrained_model_path, subfolder)
439
+
440
+ config_file = os.path.join(pretrained_model_path, 'config.json')
441
+ if not os.path.isfile(config_file):
442
+ raise RuntimeError(f"{config_file} does not exist")
443
+ with open(config_file, "r") as f:
444
+ config = json.load(f)
445
+ config["_class_name"] = cls.__name__
446
+ config["down_block_types"] = [
447
+ "CrossAttnDownBlock3D",
448
+ "CrossAttnDownBlock3D",
449
+ "CrossAttnDownBlock3D",
450
+ "DownBlock3D"
451
+ ]
452
+ config["up_block_types"] = [
453
+ "UpBlock3D",
454
+ "CrossAttnUpBlock3D",
455
+ "CrossAttnUpBlock3D",
456
+ "CrossAttnUpBlock3D"
457
+ ]
458
+
459
+ from diffusers.utils import WEIGHTS_NAME
460
+ model = cls.from_config(config)
461
+ model_file = os.path.join(pretrained_model_path, WEIGHTS_NAME)
462
+ if not os.path.isfile(model_file):
463
+ raise RuntimeError(f"{model_file} does not exist")
464
+ state_dict = torch.load(model_file, map_location="cpu")
465
+ for k, v in model.state_dict().items():
466
+ if '_temp.' in k:
467
+ state_dict.update({k: v})
468
+ model.load_state_dict(state_dict, strict=False)
469
+
470
+ return model
471
+
472
+
473
+
474
+
475
+ class Adapter(nn.Module):
476
+ def __init__(self, channels=[320, 640, 1280, 1280], nums_rb=3, cin=64, ksize=3, sk=False, use_conv=True):
477
+ super(Adapter, self).__init__()
478
+ self.unshuffle = nn.PixelUnshuffle(8)
479
+ self.channels = channels
480
+ self.nums_rb = nums_rb
481
+ self.body = []
482
+ for i in range(len(channels)):
483
+ for j in range(nums_rb):
484
+ if (i!=0) and (j==0):
485
+ self.body.append(ResnetBlock(channels[i-1], channels[i], down=True, ksize=ksize, sk=sk, use_conv=use_conv))
486
+ else:
487
+ self.body.append(ResnetBlock(channels[i], channels[i], down=False, ksize=ksize, sk=sk, use_conv=use_conv))
488
+ self.body = nn.ModuleList(self.body)
489
+ self.conv_in = nn.Conv2d(cin,channels[0], 3, 1, 1)
490
+
491
+ def forward(self, x):
492
+ b, t, c, h, w = x.shape
493
+ x = rearrange(x, 'b t c h w -> (b t) c h w')
494
+ # unshuffle
495
+ x = self.unshuffle(x)
496
+ # extract features
497
+ features = []
498
+ x = self.conv_in(x)
499
+ for i in range(len(self.channels)):
500
+ for j in range(self.nums_rb):
501
+ idx = i*self.nums_rb +j
502
+ x = self.body[idx](x)
503
+ features.append(x)
504
+
505
+ features = [ rearrange(fn, '(b t) c h w -> b c t h w', b=b, t=t) for fn in features]
506
+ return features
507
+
508
+
509
+
510
+ class ResnetBlock(nn.Module):
511
+ def __init__(self, in_c, out_c, down, ksize=3, sk=False, use_conv=True):
512
+ super().__init__()
513
+ ps = ksize//2
514
+ if in_c != out_c or sk==False:
515
+ self.in_conv = nn.Conv2d(in_c, out_c, ksize, 1, ps)
516
+ else:
517
+ # print('n_in')
518
+ self.in_conv = None
519
+ self.block1 = nn.Conv2d(out_c, out_c, 3, 1, 1)
520
+ self.act = nn.ReLU()
521
+ self.block2 = nn.Conv2d(out_c, out_c, ksize, 1, ps)
522
+ if sk==False:
523
+ self.skep = nn.Conv2d(in_c, out_c, ksize, 1, ps)
524
+ else:
525
+ self.skep = None
526
+
527
+ self.down = down
528
+ if self.down == True:
529
+ self.down_opt = Downsample(in_c, use_conv=use_conv)
530
+
531
+ def forward(self, x):
532
+ if self.down == True:
533
+ x = self.down_opt(x)
534
+ if self.in_conv is not None: # edit
535
+ x = self.in_conv(x)
536
+
537
+ h = self.block1(x)
538
+ h = self.act(h)
539
+ h = self.block2(h)
540
+ if self.skep is not None:
541
+ return h + self.skep(x)
542
+ else:
543
+ return h + x
544
+
545
+ class Downsample(nn.Module):
546
+ """
547
+ A downsampling layer with an optional convolution.
548
+ :param channels: channels in the inputs and outputs.
549
+ :param use_conv: a bool determining if a convolution is applied.
550
+ :param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then
551
+ downsampling occurs in the inner-two dimensions.
552
+ """
553
+
554
+ def __init__(self, channels, use_conv, dims=2, out_channels=None,padding=1):
555
+ super().__init__()
556
+ self.channels = channels
557
+ self.out_channels = out_channels or channels
558
+ self.use_conv = use_conv
559
+ self.dims = dims
560
+ stride = 2 if dims != 3 else (1, 2, 2)
561
+ if use_conv:
562
+ self.op = conv_nd(
563
+ dims, self.channels, self.out_channels, 3, stride=stride, padding=padding
564
+ )
565
+ else:
566
+ assert self.channels == self.out_channels
567
+ self.op = avg_pool_nd(dims, kernel_size=stride, stride=stride)
568
+
569
+ def forward(self, x):
570
+ assert x.shape[1] == self.channels
571
+ return self.op(x)
FollowYourPose/followyourpose/models/unet_blocks.py ADDED
@@ -0,0 +1,631 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Adapted from https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/unet_2d_blocks.py
2
+
3
+ import torch
4
+ from torch import nn
5
+
6
+ from .attention import Transformer3DModel
7
+ from .resnet import Downsample3D, ResnetBlock3D, Upsample3D
8
+
9
+
10
+ def get_down_block(
11
+ down_block_type,
12
+ num_layers,
13
+ in_channels,
14
+ out_channels,
15
+ temb_channels,
16
+ add_downsample,
17
+ resnet_eps,
18
+ resnet_act_fn,
19
+ attn_num_head_channels,
20
+ resnet_groups=None,
21
+ cross_attention_dim=None,
22
+ downsample_padding=None,
23
+ dual_cross_attention=False,
24
+ use_linear_projection=False,
25
+ only_cross_attention=False,
26
+ upcast_attention=False,
27
+ resnet_time_scale_shift="default",
28
+ ):
29
+ down_block_type = down_block_type[7:] if down_block_type.startswith("UNetRes") else down_block_type
30
+ if down_block_type == "DownBlock3D":
31
+ return DownBlock3D(
32
+ num_layers=num_layers,
33
+ in_channels=in_channels,
34
+ out_channels=out_channels,
35
+ temb_channels=temb_channels,
36
+ add_downsample=add_downsample,
37
+ resnet_eps=resnet_eps,
38
+ resnet_act_fn=resnet_act_fn,
39
+ resnet_groups=resnet_groups,
40
+ downsample_padding=downsample_padding,
41
+ resnet_time_scale_shift=resnet_time_scale_shift,
42
+ )
43
+ elif down_block_type == "CrossAttnDownBlock3D":
44
+ if cross_attention_dim is None:
45
+ raise ValueError("cross_attention_dim must be specified for CrossAttnDownBlock3D")
46
+ return CrossAttnDownBlock3D(
47
+ num_layers=num_layers,
48
+ in_channels=in_channels,
49
+ out_channels=out_channels,
50
+ temb_channels=temb_channels,
51
+ add_downsample=add_downsample,
52
+ resnet_eps=resnet_eps,
53
+ resnet_act_fn=resnet_act_fn,
54
+ resnet_groups=resnet_groups,
55
+ downsample_padding=downsample_padding,
56
+ cross_attention_dim=cross_attention_dim,
57
+ attn_num_head_channels=attn_num_head_channels,
58
+ dual_cross_attention=dual_cross_attention,
59
+ use_linear_projection=use_linear_projection,
60
+ only_cross_attention=only_cross_attention,
61
+ upcast_attention=upcast_attention,
62
+ resnet_time_scale_shift=resnet_time_scale_shift,
63
+ )
64
+ raise ValueError(f"{down_block_type} does not exist.")
65
+
66
+
67
+ def get_up_block(
68
+ up_block_type,
69
+ num_layers,
70
+ in_channels,
71
+ out_channels,
72
+ prev_output_channel,
73
+ temb_channels,
74
+ add_upsample,
75
+ resnet_eps,
76
+ resnet_act_fn,
77
+ attn_num_head_channels,
78
+ resnet_groups=None,
79
+ cross_attention_dim=None,
80
+ dual_cross_attention=False,
81
+ use_linear_projection=False,
82
+ only_cross_attention=False,
83
+ upcast_attention=False,
84
+ resnet_time_scale_shift="default",
85
+ ):
86
+ up_block_type = up_block_type[7:] if up_block_type.startswith("UNetRes") else up_block_type
87
+ if up_block_type == "UpBlock3D":
88
+ return UpBlock3D(
89
+ num_layers=num_layers,
90
+ in_channels=in_channels,
91
+ out_channels=out_channels,
92
+ prev_output_channel=prev_output_channel,
93
+ temb_channels=temb_channels,
94
+ add_upsample=add_upsample,
95
+ resnet_eps=resnet_eps,
96
+ resnet_act_fn=resnet_act_fn,
97
+ resnet_groups=resnet_groups,
98
+ resnet_time_scale_shift=resnet_time_scale_shift,
99
+ )
100
+ elif up_block_type == "CrossAttnUpBlock3D":
101
+ if cross_attention_dim is None:
102
+ raise ValueError("cross_attention_dim must be specified for CrossAttnUpBlock3D")
103
+ return CrossAttnUpBlock3D(
104
+ num_layers=num_layers,
105
+ in_channels=in_channels,
106
+ out_channels=out_channels,
107
+ prev_output_channel=prev_output_channel,
108
+ temb_channels=temb_channels,
109
+ add_upsample=add_upsample,
110
+ resnet_eps=resnet_eps,
111
+ resnet_act_fn=resnet_act_fn,
112
+ resnet_groups=resnet_groups,
113
+ cross_attention_dim=cross_attention_dim,
114
+ attn_num_head_channels=attn_num_head_channels,
115
+ dual_cross_attention=dual_cross_attention,
116
+ use_linear_projection=use_linear_projection,
117
+ only_cross_attention=only_cross_attention,
118
+ upcast_attention=upcast_attention,
119
+ resnet_time_scale_shift=resnet_time_scale_shift,
120
+ )
121
+ raise ValueError(f"{up_block_type} does not exist.")
122
+
123
+
124
+ class UNetMidBlock3DCrossAttn(nn.Module):
125
+ def __init__(
126
+ self,
127
+ in_channels: int,
128
+ temb_channels: int,
129
+ dropout: float = 0.0,
130
+ num_layers: int = 1,
131
+ resnet_eps: float = 1e-6,
132
+ resnet_time_scale_shift: str = "default",
133
+ resnet_act_fn: str = "swish",
134
+ resnet_groups: int = 32,
135
+ resnet_pre_norm: bool = True,
136
+ attn_num_head_channels=1,
137
+ output_scale_factor=1.0,
138
+ cross_attention_dim=1280,
139
+ dual_cross_attention=False,
140
+ use_linear_projection=False,
141
+ upcast_attention=False,
142
+ ):
143
+ super().__init__()
144
+
145
+ self.has_cross_attention = True
146
+ self.attn_num_head_channels = attn_num_head_channels
147
+ resnet_groups = resnet_groups if resnet_groups is not None else min(in_channels // 4, 32)
148
+
149
+ # there is always at least one resnet
150
+ resnets = [
151
+ ResnetBlock3D(
152
+ in_channels=in_channels,
153
+ out_channels=in_channels,
154
+ temb_channels=temb_channels,
155
+ eps=resnet_eps,
156
+ groups=resnet_groups,
157
+ dropout=dropout,
158
+ time_embedding_norm=resnet_time_scale_shift,
159
+ non_linearity=resnet_act_fn,
160
+ output_scale_factor=output_scale_factor,
161
+ pre_norm=resnet_pre_norm,
162
+ )
163
+ ]
164
+ attentions = []
165
+
166
+ for _ in range(num_layers):
167
+ if dual_cross_attention:
168
+ raise NotImplementedError
169
+ attentions.append(
170
+ Transformer3DModel(
171
+ attn_num_head_channels,
172
+ in_channels // attn_num_head_channels,
173
+ in_channels=in_channels,
174
+ num_layers=1,
175
+ cross_attention_dim=cross_attention_dim,
176
+ norm_num_groups=resnet_groups,
177
+ use_linear_projection=use_linear_projection,
178
+ upcast_attention=upcast_attention,
179
+ )
180
+ )
181
+ resnets.append(
182
+ ResnetBlock3D(
183
+ in_channels=in_channels,
184
+ out_channels=in_channels,
185
+ temb_channels=temb_channels,
186
+ eps=resnet_eps,
187
+ groups=resnet_groups,
188
+ dropout=dropout,
189
+ time_embedding_norm=resnet_time_scale_shift,
190
+ non_linearity=resnet_act_fn,
191
+ output_scale_factor=output_scale_factor,
192
+ pre_norm=resnet_pre_norm,
193
+ )
194
+ )
195
+
196
+ self.attentions = nn.ModuleList(attentions)
197
+ self.resnets = nn.ModuleList(resnets)
198
+
199
+ def forward(self, hidden_states, temb=None, encoder_hidden_states=None, attention_mask=None):
200
+ hidden_states = self.resnets[0](hidden_states, temb)
201
+ for attn, resnet in zip(self.attentions, self.resnets[1:]):
202
+ hidden_states = attn(hidden_states, encoder_hidden_states=encoder_hidden_states).sample
203
+ hidden_states = resnet(hidden_states, temb)
204
+
205
+ return hidden_states
206
+
207
+
208
+ class CrossAttnDownBlock3D(nn.Module):
209
+ def __init__(
210
+ self,
211
+ in_channels: int,
212
+ out_channels: int,
213
+ temb_channels: int,
214
+ dropout: float = 0.0,
215
+ num_layers: int = 1,
216
+ resnet_eps: float = 1e-6,
217
+ resnet_time_scale_shift: str = "default",
218
+ resnet_act_fn: str = "swish",
219
+ resnet_groups: int = 32,
220
+ resnet_pre_norm: bool = True,
221
+ attn_num_head_channels=1,
222
+ cross_attention_dim=1280,
223
+ output_scale_factor=1.0,
224
+ downsample_padding=1,
225
+ add_downsample=True,
226
+ dual_cross_attention=False,
227
+ use_linear_projection=False,
228
+ only_cross_attention=False,
229
+ upcast_attention=False,
230
+ ):
231
+ super().__init__()
232
+ resnets = []
233
+ attentions = []
234
+
235
+ self.has_cross_attention = True
236
+ self.attn_num_head_channels = attn_num_head_channels
237
+
238
+ for i in range(num_layers):
239
+ in_channels = in_channels if i == 0 else out_channels
240
+ resnets.append(
241
+ ResnetBlock3D(
242
+ in_channels=in_channels,
243
+ out_channels=out_channels,
244
+ temb_channels=temb_channels,
245
+ eps=resnet_eps,
246
+ groups=resnet_groups,
247
+ dropout=dropout,
248
+ time_embedding_norm=resnet_time_scale_shift,
249
+ non_linearity=resnet_act_fn,
250
+ output_scale_factor=output_scale_factor,
251
+ pre_norm=resnet_pre_norm,
252
+ )
253
+ )
254
+ if dual_cross_attention:
255
+ raise NotImplementedError
256
+ attentions.append(
257
+ Transformer3DModel(
258
+ attn_num_head_channels,
259
+ out_channels // attn_num_head_channels,
260
+ in_channels=out_channels,
261
+ num_layers=1,
262
+ cross_attention_dim=cross_attention_dim,
263
+ norm_num_groups=resnet_groups,
264
+ use_linear_projection=use_linear_projection,
265
+ only_cross_attention=only_cross_attention,
266
+ upcast_attention=upcast_attention,
267
+ )
268
+ )
269
+ self.attentions = nn.ModuleList(attentions)
270
+ self.resnets = nn.ModuleList(resnets)
271
+
272
+ if add_downsample:
273
+ self.downsamplers = nn.ModuleList(
274
+ [
275
+ Downsample3D(
276
+ out_channels, use_conv=True, out_channels=out_channels, padding=downsample_padding, name="op"
277
+ )
278
+ ]
279
+ )
280
+ else:
281
+ self.downsamplers = None
282
+
283
+ self.gradient_checkpointing = False
284
+
285
+ def forward(self, hidden_states, temb=None, encoder_hidden_states=None, attention_mask=None, features_adapter=None):
286
+ output_states = ()
287
+ idx = 1
288
+ for resnet, attn in zip(self.resnets, self.attentions):
289
+ if self.training and self.gradient_checkpointing:
290
+
291
+ def create_custom_forward(module, return_dict=None):
292
+ def custom_forward(*inputs):
293
+ if return_dict is not None:
294
+ return module(*inputs, return_dict=return_dict)
295
+ else:
296
+ return module(*inputs)
297
+
298
+ return custom_forward
299
+
300
+ hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(resnet), hidden_states, temb)
301
+ hidden_states = torch.utils.checkpoint.checkpoint(
302
+ create_custom_forward(attn, return_dict=False),
303
+ hidden_states,
304
+ encoder_hidden_states,
305
+ )[0]
306
+ else:
307
+ hidden_states = resnet(hidden_states, temb)
308
+ hidden_states = attn(hidden_states, encoder_hidden_states=encoder_hidden_states).sample
309
+ if ((idx+1)%3 == 0) and features_adapter is not None and len(features_adapter):
310
+ hidden_states = hidden_states + features_adapter
311
+ idx = idx + 1
312
+
313
+ output_states += (hidden_states,)
314
+
315
+ if self.downsamplers is not None:
316
+ for downsampler in self.downsamplers:
317
+ hidden_states = downsampler(hidden_states)
318
+
319
+ output_states += (hidden_states,)
320
+
321
+ return hidden_states, output_states
322
+
323
+
324
+ class DownBlock3D(nn.Module):
325
+ def __init__(
326
+ self,
327
+ in_channels: int,
328
+ out_channels: int,
329
+ temb_channels: int,
330
+ dropout: float = 0.0,
331
+ num_layers: int = 1,
332
+ resnet_eps: float = 1e-6,
333
+ resnet_time_scale_shift: str = "default",
334
+ resnet_act_fn: str = "swish",
335
+ resnet_groups: int = 32,
336
+ resnet_pre_norm: bool = True,
337
+ output_scale_factor=1.0,
338
+ add_downsample=True,
339
+ downsample_padding=1,
340
+ ):
341
+ super().__init__()
342
+ resnets = []
343
+
344
+ for i in range(num_layers):
345
+ in_channels = in_channels if i == 0 else out_channels
346
+ resnets.append(
347
+ ResnetBlock3D(
348
+ in_channels=in_channels,
349
+ out_channels=out_channels,
350
+ temb_channels=temb_channels,
351
+ eps=resnet_eps,
352
+ groups=resnet_groups,
353
+ dropout=dropout,
354
+ time_embedding_norm=resnet_time_scale_shift,
355
+ non_linearity=resnet_act_fn,
356
+ output_scale_factor=output_scale_factor,
357
+ pre_norm=resnet_pre_norm,
358
+ )
359
+ )
360
+
361
+ self.resnets = nn.ModuleList(resnets)
362
+
363
+ if add_downsample:
364
+ self.downsamplers = nn.ModuleList(
365
+ [
366
+ Downsample3D(
367
+ out_channels, use_conv=True, out_channels=out_channels, padding=downsample_padding, name="op"
368
+ )
369
+ ]
370
+ )
371
+ else:
372
+ self.downsamplers = None
373
+
374
+ self.gradient_checkpointing = False
375
+
376
+ def forward(self, hidden_states, temb=None, features_adapter=None):
377
+ output_states = ()
378
+ idx = 1
379
+ for resnet in self.resnets:
380
+ if self.training and self.gradient_checkpointing:
381
+
382
+ def create_custom_forward(module):
383
+ def custom_forward(*inputs):
384
+ return module(*inputs)
385
+
386
+ return custom_forward
387
+
388
+ hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(resnet), hidden_states, temb)
389
+ else:
390
+ hidden_states = resnet(hidden_states, temb)
391
+ if ((idx+1)%3 == 0) and features_adapter is not None and len(features_adapter):
392
+ hidden_states = hidden_states + features_adapter
393
+ idx = idx + 1
394
+
395
+ output_states += (hidden_states,)
396
+
397
+ if self.downsamplers is not None:
398
+ for downsampler in self.downsamplers:
399
+ hidden_states = downsampler(hidden_states)
400
+
401
+ output_states += (hidden_states,)
402
+
403
+ return hidden_states, output_states
404
+
405
+
406
+ class CrossAttnUpBlock3D(nn.Module):
407
+ def __init__(
408
+ self,
409
+ in_channels: int,
410
+ out_channels: int,
411
+ prev_output_channel: int,
412
+ temb_channels: int,
413
+ dropout: float = 0.0,
414
+ num_layers: int = 1,
415
+ resnet_eps: float = 1e-6,
416
+ resnet_time_scale_shift: str = "default",
417
+ resnet_act_fn: str = "swish",
418
+ resnet_groups: int = 32,
419
+ resnet_pre_norm: bool = True,
420
+ attn_num_head_channels=1,
421
+ cross_attention_dim=1280,
422
+ output_scale_factor=1.0,
423
+ add_upsample=True,
424
+ dual_cross_attention=False,
425
+ use_linear_projection=False,
426
+ only_cross_attention=False,
427
+ upcast_attention=False,
428
+ ):
429
+ super().__init__()
430
+ resnets = []
431
+ attentions = []
432
+
433
+ self.has_cross_attention = True
434
+ self.attn_num_head_channels = attn_num_head_channels
435
+
436
+ for i in range(num_layers):
437
+ res_skip_channels = in_channels if (i == num_layers - 1) else out_channels
438
+ resnet_in_channels = prev_output_channel if i == 0 else out_channels
439
+
440
+ resnets.append(
441
+ ResnetBlock3D(
442
+ in_channels=resnet_in_channels + res_skip_channels,
443
+ out_channels=out_channels,
444
+ temb_channels=temb_channels,
445
+ eps=resnet_eps,
446
+ groups=resnet_groups,
447
+ dropout=dropout,
448
+ time_embedding_norm=resnet_time_scale_shift,
449
+ non_linearity=resnet_act_fn,
450
+ output_scale_factor=output_scale_factor,
451
+ pre_norm=resnet_pre_norm,
452
+ )
453
+ )
454
+ if dual_cross_attention:
455
+ raise NotImplementedError
456
+ attentions.append(
457
+ Transformer3DModel(
458
+ attn_num_head_channels,
459
+ out_channels // attn_num_head_channels,
460
+ in_channels=out_channels,
461
+ num_layers=1,
462
+ cross_attention_dim=cross_attention_dim,
463
+ norm_num_groups=resnet_groups,
464
+ use_linear_projection=use_linear_projection,
465
+ only_cross_attention=only_cross_attention,
466
+ upcast_attention=upcast_attention,
467
+ )
468
+ )
469
+
470
+ self.attentions = nn.ModuleList(attentions)
471
+ self.resnets = nn.ModuleList(resnets)
472
+
473
+ if add_upsample:
474
+ self.upsamplers = nn.ModuleList([Upsample3D(out_channels, use_conv=True, out_channels=out_channels)])
475
+ else:
476
+ self.upsamplers = None
477
+
478
+ self.gradient_checkpointing = False
479
+
480
+ def forward(
481
+ self,
482
+ hidden_states,
483
+ res_hidden_states_tuple,
484
+ temb=None,
485
+ encoder_hidden_states=None,
486
+ upsample_size=None,
487
+ attention_mask=None,
488
+ ):
489
+ for resnet, attn in zip(self.resnets, self.attentions):
490
+ # pop res hidden states
491
+ res_hidden_states = res_hidden_states_tuple[-1]
492
+ res_hidden_states_tuple = res_hidden_states_tuple[:-1]
493
+ hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)
494
+
495
+ if self.training and self.gradient_checkpointing:
496
+
497
+ def create_custom_forward(module, return_dict=None):
498
+ def custom_forward(*inputs):
499
+ if return_dict is not None:
500
+ return module(*inputs, return_dict=return_dict)
501
+ else:
502
+ return module(*inputs)
503
+
504
+ return custom_forward
505
+
506
+ hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(resnet), hidden_states, temb)
507
+ hidden_states = torch.utils.checkpoint.checkpoint(
508
+ create_custom_forward(attn, return_dict=False),
509
+ hidden_states,
510
+ encoder_hidden_states,
511
+ )[0]
512
+ else:
513
+ hidden_states = resnet(hidden_states, temb)
514
+ hidden_states = attn(hidden_states, encoder_hidden_states=encoder_hidden_states).sample
515
+
516
+ if self.upsamplers is not None:
517
+ for upsampler in self.upsamplers:
518
+ hidden_states = upsampler(hidden_states, upsample_size)
519
+
520
+ return hidden_states
521
+
522
+
523
+ class UpBlock3D(nn.Module):
524
+ def __init__(
525
+ self,
526
+ in_channels: int,
527
+ prev_output_channel: int,
528
+ out_channels: int,
529
+ temb_channels: int,
530
+ dropout: float = 0.0,
531
+ num_layers: int = 1,
532
+ resnet_eps: float = 1e-6,
533
+ resnet_time_scale_shift: str = "default",
534
+ resnet_act_fn: str = "swish",
535
+ resnet_groups: int = 32,
536
+ resnet_pre_norm: bool = True,
537
+ output_scale_factor=1.0,
538
+ add_upsample=True,
539
+ ):
540
+ super().__init__()
541
+ resnets = []
542
+
543
+ for i in range(num_layers):
544
+ res_skip_channels = in_channels if (i == num_layers - 1) else out_channels
545
+ resnet_in_channels = prev_output_channel if i == 0 else out_channels
546
+
547
+ resnets.append(
548
+ ResnetBlock3D(
549
+ in_channels=resnet_in_channels + res_skip_channels,
550
+ out_channels=out_channels,
551
+ temb_channels=temb_channels,
552
+ eps=resnet_eps,
553
+ groups=resnet_groups,
554
+ dropout=dropout,
555
+ time_embedding_norm=resnet_time_scale_shift,
556
+ non_linearity=resnet_act_fn,
557
+ output_scale_factor=output_scale_factor,
558
+ pre_norm=resnet_pre_norm,
559
+ )
560
+ )
561
+
562
+ self.resnets = nn.ModuleList(resnets)
563
+
564
+ if add_upsample:
565
+ self.upsamplers = nn.ModuleList([Upsample3D(out_channels, use_conv=True, out_channels=out_channels)])
566
+ else:
567
+ self.upsamplers = None
568
+
569
+ self.gradient_checkpointing = False
570
+
571
+ def forward(self, hidden_states, res_hidden_states_tuple, temb=None, upsample_size=None):
572
+ for resnet in self.resnets:
573
+ # pop res hidden states
574
+ res_hidden_states = res_hidden_states_tuple[-1]
575
+ res_hidden_states_tuple = res_hidden_states_tuple[:-1]
576
+ hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)
577
+
578
+ if self.training and self.gradient_checkpointing:
579
+
580
+ def create_custom_forward(module):
581
+ def custom_forward(*inputs):
582
+ return module(*inputs)
583
+
584
+ return custom_forward
585
+
586
+ hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(resnet), hidden_states, temb)
587
+ else:
588
+ hidden_states = resnet(hidden_states, temb)
589
+
590
+ if self.upsamplers is not None:
591
+ for upsampler in self.upsamplers:
592
+ hidden_states = upsampler(hidden_states, upsample_size)
593
+
594
+ return hidden_states
595
+
596
+
597
+
598
+
599
+ def conv_nd(dims, in_channels, out_channels, kernel_size, **kwargs):
600
+ """
601
+ Create a 1D, 2D, or 3D convolution module.
602
+ """
603
+ if dims == 1:
604
+ return nn.Conv1d(in_channels, out_channels, kernel_size, **kwargs)
605
+ elif dims == 2:
606
+ return nn.Conv2d(in_channels, out_channels, kernel_size, **kwargs)
607
+ elif dims == 3:
608
+ if isinstance(kernel_size, int):
609
+ kernel_size = (1, *((kernel_size,) * 2))
610
+ if 'stride' in kwargs.keys():
611
+ if isinstance(kwargs['stride'], int):
612
+ kwargs['stride'] = (1, *((kwargs['stride'],) * 2))
613
+ if 'padding' in kwargs.keys():
614
+ if isinstance(kwargs['padding'], int):
615
+ kwargs['padding'] = (0, *((kwargs['padding'],) * 2))
616
+ return nn.Conv3d(in_channels, out_channels, kernel_size, **kwargs)
617
+ raise ValueError(f"unsupported dimensions: {dims}")
618
+
619
+
620
+
621
+ def avg_pool_nd(dims, *args, **kwargs):
622
+ """
623
+ Create a 1D, 2D, or 3D average pooling module.
624
+ """
625
+ if dims == 1:
626
+ return nn.AvgPool1d(*args, **kwargs)
627
+ elif dims == 2:
628
+ return nn.AvgPool2d(*args, **kwargs)
629
+ elif dims == 3:
630
+ return nn.AvgPool3d(*args, **kwargs)
631
+ raise ValueError(f"unsupported dimensions: {dims}")
FollowYourPose/followyourpose/pipelines/pipeline_followyourpose.py ADDED
@@ -0,0 +1,442 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Adapted from https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py
2
+
3
+ import inspect
4
+ from typing import Callable, List, Optional, Union
5
+ from dataclasses import dataclass
6
+
7
+ import numpy as np
8
+ import torch
9
+
10
+ from diffusers.utils import is_accelerate_available
11
+ from packaging import version
12
+ from transformers import CLIPTextModel, CLIPTokenizer
13
+
14
+ from diffusers.configuration_utils import FrozenDict
15
+ from diffusers.models import AutoencoderKL
16
+ from diffusers.pipeline_utils import DiffusionPipeline
17
+ from diffusers.schedulers import (
18
+ DDIMScheduler,
19
+ DPMSolverMultistepScheduler,
20
+ EulerAncestralDiscreteScheduler,
21
+ EulerDiscreteScheduler,
22
+ LMSDiscreteScheduler,
23
+ PNDMScheduler,
24
+ )
25
+ from diffusers.utils import deprecate, logging, BaseOutput
26
+
27
+ from einops import rearrange
28
+
29
+ from ..models.unet import UNet3DConditionModel
30
+ from torchvision import transforms
31
+ import torchvision.transforms._transforms_video as transforms_video
32
+ import decord
33
+
34
+
35
+ logger = logging.get_logger(__name__) # pylint: disable=invalid-name
36
+
37
+
38
+ @dataclass
39
+ class FollowYourPosePipelineOutput(BaseOutput):
40
+ videos: Union[torch.Tensor, np.ndarray]
41
+
42
+
43
+ class FollowYourPosePipeline(DiffusionPipeline):
44
+ _optional_components = []
45
+
46
+ def __init__(
47
+ self,
48
+ vae: AutoencoderKL,
49
+ text_encoder: CLIPTextModel,
50
+ tokenizer: CLIPTokenizer,
51
+ unet: UNet3DConditionModel,
52
+ scheduler: Union[
53
+ DDIMScheduler,
54
+ PNDMScheduler,
55
+ LMSDiscreteScheduler,
56
+ EulerDiscreteScheduler,
57
+ EulerAncestralDiscreteScheduler,
58
+ DPMSolverMultistepScheduler,
59
+ ],
60
+ ):
61
+ super().__init__()
62
+
63
+ if hasattr(scheduler.config, "steps_offset") and scheduler.config.steps_offset != 1:
64
+ deprecation_message = (
65
+ f"The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`"
66
+ f" should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure "
67
+ "to update the config accordingly as leaving `steps_offset` might led to incorrect results"
68
+ " in future versions. If you have downloaded this checkpoint from the Hugging Face Hub,"
69
+ " it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json`"
70
+ " file"
71
+ )
72
+ deprecate("steps_offset!=1", "1.0.0", deprecation_message, standard_warn=False)
73
+ new_config = dict(scheduler.config)
74
+ new_config["steps_offset"] = 1
75
+ scheduler._internal_dict = FrozenDict(new_config)
76
+
77
+ if hasattr(scheduler.config, "clip_sample") and scheduler.config.clip_sample is True:
78
+ deprecation_message = (
79
+ f"The configuration file of this scheduler: {scheduler} has not set the configuration `clip_sample`."
80
+ " `clip_sample` should be set to False in the configuration file. Please make sure to update the"
81
+ " config accordingly as not setting `clip_sample` in the config might lead to incorrect results in"
82
+ " future versions. If you have downloaded this checkpoint from the Hugging Face Hub, it would be very"
83
+ " nice if you could open a Pull request for the `scheduler/scheduler_config.json` file"
84
+ )
85
+ deprecate("clip_sample not set", "1.0.0", deprecation_message, standard_warn=False)
86
+ new_config = dict(scheduler.config)
87
+ new_config["clip_sample"] = False
88
+ scheduler._internal_dict = FrozenDict(new_config)
89
+
90
+ is_unet_version_less_0_9_0 = hasattr(unet.config, "_diffusers_version") and version.parse(
91
+ version.parse(unet.config._diffusers_version).base_version
92
+ ) < version.parse("0.9.0.dev0")
93
+ is_unet_sample_size_less_64 = hasattr(unet.config, "sample_size") and unet.config.sample_size < 64
94
+ if is_unet_version_less_0_9_0 and is_unet_sample_size_less_64:
95
+ deprecation_message = (
96
+ "The configuration file of the unet has set the default `sample_size` to smaller than"
97
+ " 64 which seems highly unlikely. If your checkpoint is a fine-tuned version of any of the"
98
+ " following: \n- CompVis/stable-diffusion-v1-4 \n- CompVis/stable-diffusion-v1-3 \n-"
99
+ " CompVis/stable-diffusion-v1-2 \n- CompVis/stable-diffusion-v1-1 \n- runwayml/stable-diffusion-v1-5"
100
+ " \n- runwayml/stable-diffusion-inpainting \n you should change 'sample_size' to 64 in the"
101
+ " configuration file. Please make sure to update the config accordingly as leaving `sample_size=32`"
102
+ " in the config might lead to incorrect results in future versions. If you have downloaded this"
103
+ " checkpoint from the Hugging Face Hub, it would be very nice if you could open a Pull request for"
104
+ " the `unet/config.json` file"
105
+ )
106
+ deprecate("sample_size<64", "1.0.0", deprecation_message, standard_warn=False)
107
+ new_config = dict(unet.config)
108
+ new_config["sample_size"] = 64
109
+ unet._internal_dict = FrozenDict(new_config)
110
+
111
+ self.register_modules(
112
+ vae=vae,
113
+ text_encoder=text_encoder,
114
+ tokenizer=tokenizer,
115
+ unet=unet,
116
+ scheduler=scheduler,
117
+ )
118
+ self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
119
+
120
+ def enable_vae_slicing(self):
121
+ self.vae.enable_slicing()
122
+
123
+ def disable_vae_slicing(self):
124
+ self.vae.disable_slicing()
125
+
126
+ def enable_sequential_cpu_offload(self, gpu_id=0):
127
+ if is_accelerate_available():
128
+ from accelerate import cpu_offload
129
+ else:
130
+ raise ImportError("Please install accelerate via `pip install accelerate`")
131
+
132
+ device = torch.device(f"cuda:{gpu_id}")
133
+
134
+ for cpu_offloaded_model in [self.unet, self.text_encoder, self.vae]:
135
+ if cpu_offloaded_model is not None:
136
+ cpu_offload(cpu_offloaded_model, device)
137
+
138
+
139
+ @property
140
+ def _execution_device(self):
141
+ if self.device != torch.device("meta") or not hasattr(self.unet, "_hf_hook"):
142
+ return self.device
143
+ for module in self.unet.modules():
144
+ if (
145
+ hasattr(module, "_hf_hook")
146
+ and hasattr(module._hf_hook, "execution_device")
147
+ and module._hf_hook.execution_device is not None
148
+ ):
149
+ return torch.device(module._hf_hook.execution_device)
150
+ return self.device
151
+
152
+ def _encode_prompt(self, prompt, device, num_videos_per_prompt, do_classifier_free_guidance, negative_prompt):
153
+ batch_size = len(prompt) if isinstance(prompt, list) else 1
154
+
155
+ text_inputs = self.tokenizer(
156
+ prompt,
157
+ padding="max_length",
158
+ max_length=self.tokenizer.model_max_length,
159
+ truncation=True,
160
+ return_tensors="pt",
161
+ )
162
+ text_input_ids = text_inputs.input_ids
163
+ untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
164
+
165
+ if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids):
166
+ removed_text = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1])
167
+ logger.warning(
168
+ "The following part of your input was truncated because CLIP can only handle sequences up to"
169
+ f" {self.tokenizer.model_max_length} tokens: {removed_text}"
170
+ )
171
+
172
+ if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
173
+ attention_mask = text_inputs.attention_mask.to(device)
174
+ else:
175
+ attention_mask = None
176
+
177
+ text_embeddings = self.text_encoder(
178
+ text_input_ids.to(device),
179
+ attention_mask=attention_mask,
180
+ )
181
+ text_embeddings = text_embeddings[0]
182
+
183
+ # duplicate text embeddings for each generation per prompt, using mps friendly method
184
+ bs_embed, seq_len, _ = text_embeddings.shape
185
+ text_embeddings = text_embeddings.repeat(1, num_videos_per_prompt, 1)
186
+ text_embeddings = text_embeddings.view(bs_embed * num_videos_per_prompt, seq_len, -1)
187
+
188
+ # get unconditional embeddings for classifier free guidance
189
+ if do_classifier_free_guidance:
190
+ uncond_tokens: List[str]
191
+ if negative_prompt is None:
192
+ uncond_tokens = [""] * batch_size
193
+ elif type(prompt) is not type(negative_prompt):
194
+ raise TypeError(
195
+ f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
196
+ f" {type(prompt)}."
197
+ )
198
+ elif isinstance(negative_prompt, str):
199
+ uncond_tokens = [negative_prompt]
200
+ elif batch_size != len(negative_prompt):
201
+ raise ValueError(
202
+ f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
203
+ f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
204
+ " the batch size of `prompt`."
205
+ )
206
+ else:
207
+ uncond_tokens = negative_prompt
208
+
209
+ max_length = text_input_ids.shape[-1]
210
+ uncond_input = self.tokenizer(
211
+ uncond_tokens,
212
+ padding="max_length",
213
+ max_length=max_length,
214
+ truncation=True,
215
+ return_tensors="pt",
216
+ )
217
+
218
+ if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
219
+ attention_mask = uncond_input.attention_mask.to(device)
220
+ else:
221
+ attention_mask = None
222
+
223
+ uncond_embeddings = self.text_encoder(
224
+ uncond_input.input_ids.to(device),
225
+ attention_mask=attention_mask,
226
+ )
227
+ uncond_embeddings = uncond_embeddings[0]
228
+
229
+ # duplicate unconditional embeddings for each generation per prompt, using mps friendly method
230
+ seq_len = uncond_embeddings.shape[1]
231
+ uncond_embeddings = uncond_embeddings.repeat(1, num_videos_per_prompt, 1)
232
+ uncond_embeddings = uncond_embeddings.view(batch_size * num_videos_per_prompt, seq_len, -1)
233
+
234
+ # For classifier free guidance, we need to do two forward passes.
235
+ # Here we concatenate the unconditional and text embeddings into a single batch
236
+ # to avoid doing two forward passes
237
+ text_embeddings = torch.cat([uncond_embeddings, text_embeddings])
238
+
239
+ return text_embeddings
240
+
241
+ def decode_latents(self, latents):
242
+ video_length = latents.shape[2]
243
+ latents = 1 / 0.18215 * latents
244
+ latents = rearrange(latents, "b c f h w -> (b f) c h w")
245
+ video = self.vae.decode(latents).sample
246
+ video = rearrange(video, "(b f) c h w -> b c f h w", f=video_length)
247
+ video = (video / 2 + 0.5).clamp(0, 1)
248
+ # we always cast to float32 as this does not cause significant overhead and is compatible with bfloa16
249
+ video = video.cpu().float().numpy()
250
+ return video
251
+
252
+ def prepare_extra_step_kwargs(self, generator, eta):
253
+ # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
254
+ # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
255
+ # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
256
+ # and should be between [0, 1]
257
+
258
+ accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
259
+ extra_step_kwargs = {}
260
+ if accepts_eta:
261
+ extra_step_kwargs["eta"] = eta
262
+
263
+ # check if the scheduler accepts generator
264
+ accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
265
+ if accepts_generator:
266
+ extra_step_kwargs["generator"] = generator
267
+ return extra_step_kwargs
268
+
269
+ def check_inputs(self, prompt, height, width, callback_steps):
270
+ if not isinstance(prompt, str) and not isinstance(prompt, list):
271
+ raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
272
+
273
+ if height % 8 != 0 or width % 8 != 0:
274
+ raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
275
+
276
+ if (callback_steps is None) or (
277
+ callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0)
278
+ ):
279
+ raise ValueError(
280
+ f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
281
+ f" {type(callback_steps)}."
282
+ )
283
+
284
+ def prepare_latents(self, batch_size, num_channels_latents, video_length, height, width, dtype, device, generator, latents=None):
285
+ shape = (batch_size, num_channels_latents, video_length, height // self.vae_scale_factor, width // self.vae_scale_factor)
286
+ if isinstance(generator, list) and len(generator) != batch_size:
287
+ raise ValueError(
288
+ f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
289
+ f" size of {batch_size}. Make sure the batch size matches the length of the generators."
290
+ )
291
+
292
+ if latents is None:
293
+ rand_device = "cpu" if device.type == "mps" else device
294
+
295
+ if isinstance(generator, list):
296
+ shape = (1,) + shape[1:]
297
+ latents = [
298
+ torch.randn(shape, generator=generator[i], device=rand_device, dtype=dtype)
299
+ for i in range(batch_size)
300
+ ]
301
+ latents = torch.cat(latents, dim=0).to(device)
302
+ else:
303
+ latents = torch.randn(shape, generator=generator, device=rand_device, dtype=dtype).to(device)
304
+ else:
305
+ if latents.shape != shape:
306
+ raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {shape}")
307
+ latents = latents.to(device)
308
+
309
+ # scale the initial noise by the standard deviation required by the scheduler
310
+ latents = latents * self.scheduler.init_noise_sigma
311
+ return latents
312
+
313
+ @torch.no_grad()
314
+ def __call__(
315
+ self,
316
+ prompt: Union[str, List[str]],
317
+ video_length: Optional[int],
318
+ height: Optional[int] = None,
319
+ width: Optional[int] = None,
320
+ num_inference_steps: int = 50,
321
+ guidance_scale: float = 7.5,
322
+ negative_prompt: Optional[Union[str, List[str]]] = None,
323
+ num_videos_per_prompt: Optional[int] = 1,
324
+ eta: float = 0.0,
325
+ generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
326
+ latents: Optional[torch.FloatTensor] = None,
327
+ output_type: Optional[str] = "tensor",
328
+ return_dict: bool = True,
329
+ callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
330
+ callback_steps: Optional[int] = 1,
331
+ skeleton_path: Optional[str] = None,
332
+ **kwargs,
333
+ ):
334
+ # Default height and width to unet
335
+ height = height or self.unet.config.sample_size * self.vae_scale_factor
336
+ width = width or self.unet.config.sample_size * self.vae_scale_factor
337
+
338
+ # Check inputs. Raise error if not correct
339
+ self.check_inputs(prompt, height, width, callback_steps)
340
+
341
+ # Define call parameters
342
+ batch_size = 1 if isinstance(prompt, str) else len(prompt)
343
+ device = self._execution_device
344
+ # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
345
+ # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
346
+ # corresponds to doing no classifier free guidance.
347
+ do_classifier_free_guidance = guidance_scale > 1.0
348
+
349
+ # Encode input prompt
350
+ text_embeddings = self._encode_prompt(
351
+ prompt, device, num_videos_per_prompt, do_classifier_free_guidance, negative_prompt
352
+ )
353
+
354
+ # Prepare timesteps
355
+ self.scheduler.set_timesteps(num_inference_steps, device=device)
356
+ timesteps = self.scheduler.timesteps
357
+
358
+ # Prepare latent variables
359
+ num_channels_latents = self.unet.in_channels
360
+ latents = self.prepare_latents(
361
+ batch_size * num_videos_per_prompt,
362
+ num_channels_latents,
363
+ video_length,
364
+ height,
365
+ width,
366
+ text_embeddings.dtype,
367
+ device,
368
+ generator,
369
+ latents,
370
+ )
371
+ latents_dtype = latents.dtype
372
+
373
+ # Prepare extra step kwargs.
374
+ extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
375
+
376
+ # Denoising loop
377
+ num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
378
+
379
+ skeleton, save_skeleton = self.get_skeleton(skeleton_path)
380
+ skeleton = skeleton.to(latents.device).repeat(2,1,1,1,1)
381
+
382
+ with self.progress_bar(total=num_inference_steps) as progress_bar:
383
+ for i, t in enumerate(timesteps):
384
+ # expand the latents if we are doing classifier free guidance
385
+ latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
386
+ latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
387
+
388
+ # predict the noise residual
389
+ noise_pred = self.unet(latent_model_input, t, encoder_hidden_states=text_embeddings, skeleton=skeleton, train_or_sample='sample').sample.to(dtype=latents_dtype)
390
+
391
+ # perform guidance
392
+ if do_classifier_free_guidance:
393
+ noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
394
+ noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
395
+
396
+ # compute the previous noisy sample x_t -> x_t-1
397
+ latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample
398
+
399
+ # call the callback, if provided
400
+ if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
401
+ progress_bar.update()
402
+ if callback is not None and i % callback_steps == 0:
403
+ callback(i, t, latents)
404
+
405
+ # Post-processing
406
+ video = self.decode_latents(latents)
407
+
408
+ # Convert to tensor
409
+ if output_type == "tensor":
410
+ video = torch.from_numpy(video)
411
+ video_skeleton = rearrange(save_skeleton, 'b t h w c -> b c t h w')
412
+ video = torch.cat([video_skeleton,video],dim=-1)
413
+
414
+ if not return_dict:
415
+ return video
416
+
417
+ return FollowYourPosePipelineOutput(videos=video)
418
+
419
+
420
+ @torch.no_grad()
421
+ def get_skeleton(self,skeleton_path):
422
+ skeleton_start_end = list(range(0, 120, 5))
423
+ self_transform = transforms.Compose([transforms.Resize(512),
424
+ transforms_video.CenterCropVideo(512)])
425
+
426
+ vr_skeleton = decord.VideoReader(skeleton_path)
427
+ # sample frames
428
+
429
+ # for start_end in skeleton_start_end:
430
+ skeleton = vr_skeleton.get_batch(skeleton_start_end)
431
+ if not isinstance(skeleton,torch.Tensor):
432
+ skeleton = torch.from_numpy(skeleton.asnumpy()).float()
433
+ skeleton_video_trans = self_transform(skeleton.permute(3, 0, 1, 2))
434
+ skeleton_final = skeleton_video_trans.permute(1, 2, 3, 0)
435
+ # import pdb;pdb.set_trace()
436
+
437
+ skeleton_video = (skeleton_final / 255).unsqueeze(0)
438
+ save_skeleton = skeleton_video.clone().detach()
439
+ skeleton_video = rearrange(skeleton_video, 'b t h w c -> b t c h w')
440
+ # skeleton_video = skeleton_video.to(model.device)
441
+
442
+ return skeleton_video, save_skeleton
FollowYourPose/followyourpose/util.py ADDED
@@ -0,0 +1,84 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import imageio
3
+ import numpy as np
4
+ from typing import Union
5
+
6
+ import torch
7
+ import torchvision
8
+
9
+ from tqdm import tqdm
10
+ from einops import rearrange
11
+
12
+
13
+ def save_videos_grid(videos: torch.Tensor, path: str, rescale=False, n_rows=4, fps=8):
14
+ videos = rearrange(videos, "b c t h w -> t b c h w")
15
+ outputs = []
16
+ for x in videos:
17
+ x = torchvision.utils.make_grid(x, nrow=n_rows)
18
+ x = x.transpose(0, 1).transpose(1, 2).squeeze(-1)
19
+ if rescale:
20
+ x = (x + 1.0) / 2.0 # -1,1 -> 0,1
21
+ x = (x * 255).numpy().astype(np.uint8)
22
+ outputs.append(x)
23
+
24
+ os.makedirs(os.path.dirname(path), exist_ok=True)
25
+ imageio.mimsave(path, outputs, fps=fps)
26
+
27
+
28
+ # DDIM Inversion
29
+ @torch.no_grad()
30
+ def init_prompt(prompt, pipeline):
31
+ uncond_input = pipeline.tokenizer(
32
+ [""], padding="max_length", max_length=pipeline.tokenizer.model_max_length,
33
+ return_tensors="pt"
34
+ )
35
+ uncond_embeddings = pipeline.text_encoder(uncond_input.input_ids.to(pipeline.device))[0]
36
+ text_input = pipeline.tokenizer(
37
+ [prompt],
38
+ padding="max_length",
39
+ max_length=pipeline.tokenizer.model_max_length,
40
+ truncation=True,
41
+ return_tensors="pt",
42
+ )
43
+ text_embeddings = pipeline.text_encoder(text_input.input_ids.to(pipeline.device))[0]
44
+ context = torch.cat([uncond_embeddings, text_embeddings])
45
+
46
+ return context
47
+
48
+
49
+ def next_step(model_output: Union[torch.FloatTensor, np.ndarray], timestep: int,
50
+ sample: Union[torch.FloatTensor, np.ndarray], ddim_scheduler):
51
+ timestep, next_timestep = min(
52
+ timestep - ddim_scheduler.config.num_train_timesteps // ddim_scheduler.num_inference_steps, 999), timestep
53
+ alpha_prod_t = ddim_scheduler.alphas_cumprod[timestep] if timestep >= 0 else ddim_scheduler.final_alpha_cumprod
54
+ alpha_prod_t_next = ddim_scheduler.alphas_cumprod[next_timestep]
55
+ beta_prod_t = 1 - alpha_prod_t
56
+ next_original_sample = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5
57
+ next_sample_direction = (1 - alpha_prod_t_next) ** 0.5 * model_output
58
+ next_sample = alpha_prod_t_next ** 0.5 * next_original_sample + next_sample_direction
59
+ return next_sample
60
+
61
+
62
+ def get_noise_pred_single(latents, t, context, unet):
63
+ noise_pred = unet(latents, t, encoder_hidden_states=context)["sample"]
64
+ return noise_pred
65
+
66
+
67
+ @torch.no_grad()
68
+ def ddim_loop(pipeline, ddim_scheduler, latent, num_inv_steps, prompt):
69
+ context = init_prompt(prompt, pipeline)
70
+ uncond_embeddings, cond_embeddings = context.chunk(2)
71
+ all_latent = [latent]
72
+ latent = latent.clone().detach()
73
+ for i in tqdm(range(num_inv_steps)):
74
+ t = ddim_scheduler.timesteps[len(ddim_scheduler.timesteps) - i - 1]
75
+ noise_pred = get_noise_pred_single(latent, t, cond_embeddings, pipeline.unet)
76
+ latent = next_step(noise_pred, t, latent, ddim_scheduler)
77
+ all_latent.append(latent)
78
+ return all_latent
79
+
80
+
81
+ @torch.no_grad()
82
+ def ddim_inversion(pipeline, ddim_scheduler, video_latent, num_inv_steps, prompt=""):
83
+ ddim_latents = ddim_loop(pipeline, ddim_scheduler, video_latent, num_inv_steps, prompt)
84
+ return ddim_latents
FollowYourPose/test_followyourpose.py ADDED
@@ -0,0 +1,189 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import argparse
2
+ import datetime
3
+ import logging
4
+ import inspect
5
+ import math
6
+ import os
7
+ from typing import Dict, Optional, Tuple
8
+ from omegaconf import OmegaConf
9
+
10
+ import torch
11
+ import torch.nn.functional as F
12
+ import torch.utils.checkpoint
13
+
14
+ import diffusers
15
+ import transformers
16
+ from accelerate import Accelerator
17
+ from accelerate.logging import get_logger
18
+ from accelerate.utils import set_seed
19
+ from diffusers import AutoencoderKL, DDPMScheduler, DDIMScheduler
20
+ from diffusers.optimization import get_scheduler
21
+ from diffusers.utils import check_min_version
22
+ from diffusers.utils.import_utils import is_xformers_available
23
+ from tqdm.auto import tqdm
24
+ from transformers import CLIPTextModel, CLIPTokenizer
25
+
26
+ import sys
27
+ sys.path.append('FollowYourPose')
28
+ from followyourpose.models.unet import UNet3DConditionModel
29
+ from followyourpose.pipelines.pipeline_followyourpose import FollowYourPosePipeline
30
+ from followyourpose.util import save_videos_grid, ddim_inversion
31
+ from einops import rearrange
32
+
33
+ check_min_version("0.10.0.dev0")
34
+
35
+ logger = get_logger(__name__, log_level="INFO")
36
+
37
+
38
+ def collate_fn(examples):
39
+ """Concat a batch of sampled image in dataloader
40
+ """
41
+ batch = {
42
+ "prompt_ids": torch.cat([example["prompt_ids"] for example in examples], dim=0),
43
+ "images": torch.stack([example["images"] for example in examples]),
44
+ }
45
+ return batch
46
+
47
+
48
+
49
+ def test(
50
+ pretrained_model_path: str,
51
+ output_dir: str,
52
+ validation_data: Dict,
53
+ validation_steps: int = 100,
54
+ train_batch_size: int = 1,
55
+ gradient_accumulation_steps: int = 1,
56
+ gradient_checkpointing: bool = True,
57
+ resume_from_checkpoint: Optional[str] = None,
58
+ mixed_precision: Optional[str] = "fp16",
59
+ enable_xformers_memory_efficient_attention: bool = True,
60
+ seed: Optional[int] = None,
61
+ skeleton_path: Optional[str] = None,
62
+ ):
63
+ *_, config = inspect.getargvalues(inspect.currentframe())
64
+
65
+ accelerator = Accelerator(
66
+ gradient_accumulation_steps=gradient_accumulation_steps,
67
+ mixed_precision=mixed_precision,
68
+ )
69
+
70
+ # Make one log on every process with the configuration for debugging.
71
+ logging.basicConfig(
72
+ format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
73
+ datefmt="%m/%d/%Y %H:%M:%S",
74
+ level=logging.INFO,
75
+ )
76
+ logger.info(accelerator.state, main_process_only=False)
77
+ if accelerator.is_local_main_process:
78
+ transformers.utils.logging.set_verbosity_warning()
79
+ diffusers.utils.logging.set_verbosity_info()
80
+ else:
81
+ transformers.utils.logging.set_verbosity_error()
82
+ diffusers.utils.logging.set_verbosity_error()
83
+
84
+ # If passed along, set the training seed now.
85
+ if seed is not None:
86
+ set_seed(seed)
87
+
88
+ # Handle the output folder creation
89
+ if accelerator.is_main_process:
90
+
91
+ os.makedirs(output_dir, exist_ok=True)
92
+ os.makedirs(f"{output_dir}/samples", exist_ok=True)
93
+ os.makedirs(f"{output_dir}/inv_latents", exist_ok=True)
94
+ OmegaConf.save(config, os.path.join(output_dir, 'config.yaml'))
95
+
96
+ # Load scheduler, tokenizer and models.
97
+ noise_scheduler = DDPMScheduler.from_pretrained(pretrained_model_path, subfolder="scheduler")
98
+ tokenizer = CLIPTokenizer.from_pretrained(pretrained_model_path, subfolder="tokenizer")
99
+ text_encoder = CLIPTextModel.from_pretrained(pretrained_model_path, subfolder="text_encoder")
100
+ vae = AutoencoderKL.from_pretrained(pretrained_model_path, subfolder="vae")
101
+ unet = UNet3DConditionModel.from_pretrained_2d(pretrained_model_path, subfolder="unet")
102
+
103
+ # Freeze vae and text_encoder
104
+ vae.requires_grad_(False)
105
+ text_encoder.requires_grad_(False)
106
+
107
+ unet.requires_grad_(False)
108
+ # for name, module in unet.named_modules():
109
+ # if name.endswith(tuple(trainable_modules)):
110
+ # for params in module.parameters():
111
+ # params.requires_grad = True
112
+
113
+ if enable_xformers_memory_efficient_attention:
114
+ if is_xformers_available():
115
+ unet.enable_xformers_memory_efficient_attention()
116
+ else:
117
+ raise ValueError("xformers is not available. Make sure it is installed correctly")
118
+
119
+ if gradient_checkpointing:
120
+ unet.enable_gradient_checkpointing()
121
+
122
+
123
+ # Get the validation pipeline
124
+ validation_pipeline = FollowYourPosePipeline(
125
+ vae=vae, text_encoder=text_encoder, tokenizer=tokenizer, unet=unet,
126
+ scheduler=DDIMScheduler.from_pretrained(pretrained_model_path, subfolder="scheduler")
127
+ )
128
+ validation_pipeline.enable_vae_slicing()
129
+ ddim_inv_scheduler = DDIMScheduler.from_pretrained(pretrained_model_path, subfolder='scheduler')
130
+ ddim_inv_scheduler.set_timesteps(validation_data.num_inv_steps)
131
+
132
+ unet = accelerator.prepare(unet)
133
+ # For mixed precision training we cast the text_encoder and vae weights to half-precision
134
+ # as these models are only used for inference, keeping weights in full precision is not required.
135
+ weight_dtype = torch.float32
136
+ if accelerator.mixed_precision == "fp16":
137
+ weight_dtype = torch.float16
138
+ elif accelerator.mixed_precision == "bf16":
139
+ weight_dtype = torch.bfloat16
140
+
141
+ # Move text_encode and vae to gpu and cast to weight_dtype
142
+ text_encoder.to(accelerator.device, dtype=weight_dtype)
143
+ vae.to(accelerator.device, dtype=weight_dtype)
144
+
145
+ # We need to recalculate our total training steps as the size of the training dataloader may have changed.
146
+
147
+ # We need to initialize the trackers we use, and also store our configuration.
148
+ # The trackers initializes automatically on the main process.
149
+ if accelerator.is_main_process:
150
+ accelerator.init_trackers("text2video-fine-tune")
151
+
152
+ global_step = 0
153
+ first_epoch = 0
154
+
155
+ # Potentially load in the weights and states from a previous save
156
+ load_path = None
157
+ if resume_from_checkpoint:
158
+ if resume_from_checkpoint != "latest":
159
+
160
+ load_path = resume_from_checkpoint
161
+ output_dir = os.path.abspath(os.path.join(resume_from_checkpoint, ".."))
162
+ accelerator.print(f"load from checkpoint {load_path}")
163
+ accelerator.load_state(load_path)
164
+
165
+ global_step = int(load_path.split("-")[-1])
166
+
167
+
168
+ if accelerator.is_main_process:
169
+ samples = []
170
+ generator = torch.Generator(device=accelerator.device)
171
+ generator.manual_seed(seed)
172
+
173
+ ddim_inv_latent = None
174
+ from datetime import datetime
175
+ now = str(datetime.now())
176
+ print(now)
177
+ for idx, prompt in enumerate(validation_data.prompts):
178
+ sample = validation_pipeline(prompt, generator=generator, latents=ddim_inv_latent,
179
+ skeleton_path=skeleton_path,
180
+ **validation_data).videos
181
+ save_videos_grid(sample, f"{output_dir}/inference/sample-{global_step}-{str(seed)}-{now}/{prompt}.gif")
182
+ samples.append(sample)
183
+ samples = torch.concat(samples)
184
+ save_path = f"{output_dir}/inference/sample-{global_step}-{str(seed)}-{now}.mp4"
185
+ save_videos_grid(samples, save_path)
186
+ logger.info(f"Saved samples to {save_path}")
187
+
188
+ return save_path
189
+