FollowYourPose / app_followyourpose.py
mayuema
first release
d2dd1cd
raw
history blame
9.63 kB
#!/usr/bin/env python
from __future__ import annotations
import os
import gradio as gr
from inference_followyourpose import merge_config_then_run
# TITLE = '# [FateZero](http://fate-zero-edit.github.io/)'
HF_TOKEN = os.getenv('HF_TOKEN')
# pipe = InferencePipeline(HF_TOKEN)
pipe = merge_config_then_run()
# app = InferenceUtil(HF_TOKEN)
with gr.Blocks(css='style.css') as demo:
# gr.Markdown(TITLE)
gr.HTML(
"""
<div style="text-align: center; max-width: 1200px; margin: 20px auto;">
<h1 style="font-weight: 900; font-size: 2rem; margin: 0rem">
🕺🕺🕺 Follow Your Pose 💃💃💃 </font></center> <br> <center>Pose-Guided Text-to-Video Generation using Pose-Free Videos
</h1>
<h2 style="font-weight: 450; font-size: 1rem; margin: 0rem">
<a href="https://mayuelala.github.io/">Yue Ma*</a>
<a href="https://github.com/YingqingHe">Yingqing He*</a> , <a href="http://vinthony.github.io/">Xiaodong Cun</a>,
<a href="https://xinntao.github.io/"> Xintao Wang </a>,
<a href="https://scholar.google.com/citations?user=4oXBp9UAAAAJ&hl=zh-CN">Ying Shan</a>,
<a href="https://scholar.google.com/citations?user=Xrh1OIUAAAAJ&hl=zh-CN">Xiu Li</a>,
<a href="http://cqf.io">Qifeng Chen</a>
</h2>
<h2 style="font-weight: 450; font-size: 1rem; margin: 0rem">
<span class="link-block">
[<a href="https://arxiv.org/abs/2304.01186" target="_blank"
class="external-link ">
<span class="icon">
<i class="ai ai-arxiv"></i>
</span>
<span>arXiv</span>
</a>]
</span>
<!-- Github link -->
<span class="link-block">
[<a href="https://github.com/mayuelala/FollowYourPose" target="_blank"
class="external-link ">
<span class="icon">
<i class="fab fa-github"></i>
</span>
<span>Code</span>
</a>]
</span>
<!-- Github link -->
<span class="link-block">
[<a href="https://follow-your-pose.github.io/" target="_blank"
class="external-link ">
<span class="icon">
<i class="fab fa-github"></i>
</span>
<span>Homepage</span>
</a>]
</span>
</h2>
<h2 style="font-weight: 450; font-size: 1rem; margin-top: 0.5rem; margin-bottom: 0.5rem">
TL;DR: We tune 2D stable-diffusion to generate the character videos from pose and text description.
</h2>
</div>
""")
gr.HTML("""
<p>Alternatively, try our GitHub <a href=https://github.com/mayuelala/FollowYourPose> code </a> on your GPU.
</p>""")
with gr.Row():
with gr.Column():
with gr.Accordion('Input Video', open=True):
# user_input_video = gr.File(label='Input Source Video')
user_input_video = gr.Video(label='Input Source Video', source='upload', type='numpy', format="mp4", visible=True).style(height="auto")
with gr.Accordion('Temporal Crop offset and Sampling Stride', open=False):
n_sample_frame = gr.Slider(label='Number of Frames',
minimum=0,
maximum=32,
step=1,
value=8)
stride = gr.Slider(label='Temporal stride',
minimum=0,
maximum=20,
step=1,
value=1)
start_sample_frame = gr.Number(label='Start frame in the video',
value=0,
precision=0)
with gr.Accordion('Spatial Crop offset', open=False):
left_crop = gr.Number(label='Left crop',
value=0,
precision=0)
right_crop = gr.Number(label='Right crop',
value=0,
precision=0)
top_crop = gr.Number(label='Top crop',
value=0,
precision=0)
bottom_crop = gr.Number(label='Bottom crop',
value=0,
precision=0)
offset_list = [
left_crop,
right_crop,
top_crop,
bottom_crop,
]
ImageSequenceDataset_list = [
start_sample_frame,
n_sample_frame,
stride
] + offset_list
# model_id = gr.Dropdown(
# label='Model ID',
# choices=[
# 'CompVis/stable-diffusion-v1-4',
# # add shape editing ckpt here
# ],
# value='CompVis/stable-diffusion-v1-4')
with gr.Accordion('Text Prompt', open=True):
# source_prompt = gr.Textbox(label='Source Prompt',
# info='A good prompt describes each frame and most objects in video. Especially, it has the object or attribute that we want to edit or preserve.',
# max_lines=1,
# placeholder='Example: "a silver jeep driving down a curvy road in the countryside"',
# value='a silver jeep driving down a curvy road in the countryside')
target_prompt = gr.Textbox(label='Target Prompt',
info='A reasonable composition of video may achieve better results(e.g., "sunflower" video with "Van Gogh" prompt is better than "sunflower" with "Monet")',
max_lines=1,
placeholder='Example: "watercolor painting of a silver jeep driving down a curvy road in the countryside"',
value='watercolor painting of a silver jeep driving down a curvy road in the countryside')
run_button = gr.Button('Generate')
with gr.Column():
result = gr.Video(label='Result')
# result.style(height=512, width=512)
# with gr.Accordion('FateZero Parameters for attention fusing', open=True):
# cross_replace_steps = gr.Slider(label='Cross-att replace steps',
# info='More steps, replace more cross attention to preserve semantic layout.',
# minimum=0.0,
# maximum=1.0,
# step=0.1,
# value=0.7)
# self_replace_steps = gr.Slider(label='Self-att replace steps',
# info='More steps, replace more spatial-temporal self-attention to preserve geometry and motion.',
# minimum=0.0,
# maximum=1.0,
# step=0.1,
# value=0.7)
# enhance_words = gr.Textbox(label='Enhanced words',
# info='Amplify the target-words cross attention',
# max_lines=1,
# placeholder='Example: "watercolor "',
# value='watercolor')
# enhance_words_value = gr.Slider(label='Target cross-att amplification',
# info='larger value, more elements of target words',
# minimum=0.0,
# maximum=20.0,
# step=1,
# value=10)
with gr.Accordion('DDIM Parameters', open=True):
num_steps = gr.Slider(label='Number of Steps',
info='larger value has better editing capacity, but takes more time and memory.',
minimum=0,
maximum=50,
step=1,
value=50)
guidance_scale = gr.Slider(label='CFG Scale',
minimum=0,
maximum=50,
step=0.1,
value=12.5)
with gr.Row():
from example import style_example
examples = style_example
inputs = [
user_input_video,
target_prompt,
num_steps,
guidance_scale,
*ImageSequenceDataset_list
]
target_prompt.submit(fn=pipe.run, inputs=inputs, outputs=result)
run_button.click(fn=pipe.run, inputs=inputs, outputs=result)
demo.queue().launch(share=False, server_name='0.0.0.0', server_port=80)