init
Browse files- .gitignore +2 -0
- app.py +97 -0
- vibt/qwen_image.py +347 -0
- vibt/scheduler.py +44 -0
- vibt/wan.py +132 -0
.gitignore
ADDED
|
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
|
|
|
| 1 |
+
**/__pycache__/
|
| 2 |
+
*.pyc
|
app.py
ADDED
|
@@ -0,0 +1,97 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import spaces
|
| 3 |
+
import torch
|
| 4 |
+
import os
|
| 5 |
+
|
| 6 |
+
# ==========================================
|
| 7 |
+
# 1. 核心处理函数 (骨架)
|
| 8 |
+
# ==========================================
|
| 9 |
+
@spaces.GPU
|
| 10 |
+
def run_stylization(input_video_path, prompt, noise_scale, shift_gamma, steps, guidance_scale, seed):
|
| 11 |
+
"""
|
| 12 |
+
这里是实际推理逻辑的占位符。
|
| 13 |
+
"""
|
| 14 |
+
if not input_video_path:
|
| 15 |
+
return None
|
| 16 |
+
|
| 17 |
+
print("========== Inference Start ==========")
|
| 18 |
+
print(f"Video Path: {input_video_path}")
|
| 19 |
+
print(f"Prompt: {prompt}")
|
| 20 |
+
print(f"Params: Noise={noise_scale}, Gamma={shift_gamma}, Steps={steps}, CFG={guidance_scale}, Seed={seed}")
|
| 21 |
+
|
| 22 |
+
# [Prototype Logic] 直接返回输入视频用于演示
|
| 23 |
+
return input_video_path
|
| 24 |
+
|
| 25 |
+
# ==========================================
|
| 26 |
+
# 2. 界面布局 (Gradio Blocks)
|
| 27 |
+
# ==========================================
|
| 28 |
+
|
| 29 |
+
# 移除 CSS 参数以修复 TypeError
|
| 30 |
+
with gr.Blocks() as demo:
|
| 31 |
+
with gr.Column(elem_id="col-container"):
|
| 32 |
+
gr.Markdown("# 🎥 ViBT Video Stylization Interface")
|
| 33 |
+
gr.Markdown("上传视频并设置风格化参数。")
|
| 34 |
+
|
| 35 |
+
with gr.Row():
|
| 36 |
+
# --- 左侧:输入与设置 ---
|
| 37 |
+
with gr.Column():
|
| 38 |
+
# 视频输入
|
| 39 |
+
input_video = gr.Video(label="Source Video", sources=["upload"])
|
| 40 |
+
|
| 41 |
+
# 提示词
|
| 42 |
+
prompt_input = gr.Textbox(
|
| 43 |
+
label="Style Prompt",
|
| 44 |
+
placeholder="e.g., Van Gogh style, cyberpunk city...",
|
| 45 |
+
value="Oil painting style, vivid colors"
|
| 46 |
+
)
|
| 47 |
+
|
| 48 |
+
# 高级参数折叠区
|
| 49 |
+
with gr.Accordion("Advanced Settings", open=True):
|
| 50 |
+
with gr.Row():
|
| 51 |
+
noise_scale = gr.Slider(
|
| 52 |
+
label="Noise Scale", minimum=0.0, maximum=2.0, step=0.1, value=1.0,
|
| 53 |
+
info="Controls how much noise is added."
|
| 54 |
+
)
|
| 55 |
+
shift_gamma = gr.Slider(
|
| 56 |
+
label="Shift Gamma", minimum=1.0, maximum=10.0, step=0.5, value=5.0,
|
| 57 |
+
info="Scheduler parameter."
|
| 58 |
+
)
|
| 59 |
+
|
| 60 |
+
with gr.Row():
|
| 61 |
+
num_steps = gr.Slider(
|
| 62 |
+
label="Inference Steps", minimum=10, maximum=50, step=1, value=28,
|
| 63 |
+
info="More steps = higher quality but slower."
|
| 64 |
+
)
|
| 65 |
+
guidance_scale = gr.Slider(
|
| 66 |
+
label="Guidance Scale (CFG)", minimum=1.0, maximum=20.0, step=0.5, value=1.5,
|
| 67 |
+
info="How closely to follow the prompt."
|
| 68 |
+
)
|
| 69 |
+
|
| 70 |
+
seed = gr.Number(label="Seed", value=42, precision=0)
|
| 71 |
+
|
| 72 |
+
# 提交按钮
|
| 73 |
+
run_btn = gr.Button("Generate Video", variant="primary")
|
| 74 |
+
|
| 75 |
+
# --- 右侧:结果输出 ---
|
| 76 |
+
with gr.Column():
|
| 77 |
+
output_video = gr.Video(label="Stylized Result", interactive=False)
|
| 78 |
+
|
| 79 |
+
# ==========================================
|
| 80 |
+
# 3. 事件绑定
|
| 81 |
+
# ==========================================
|
| 82 |
+
run_btn.click(
|
| 83 |
+
fn=run_stylization,
|
| 84 |
+
inputs=[
|
| 85 |
+
input_video,
|
| 86 |
+
prompt_input,
|
| 87 |
+
noise_scale,
|
| 88 |
+
shift_gamma,
|
| 89 |
+
num_steps,
|
| 90 |
+
guidance_scale,
|
| 91 |
+
seed
|
| 92 |
+
],
|
| 93 |
+
outputs=[output_video]
|
| 94 |
+
)
|
| 95 |
+
|
| 96 |
+
if __name__ == "__main__":
|
| 97 |
+
demo.launch()
|
vibt/qwen_image.py
ADDED
|
@@ -0,0 +1,347 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from typing import Any, Dict, List, Optional, Union
|
| 2 |
+
|
| 3 |
+
import torch
|
| 4 |
+
from PIL import Image
|
| 5 |
+
|
| 6 |
+
|
| 7 |
+
from diffusers import QwenImageEditPipeline, QwenImagePipeline
|
| 8 |
+
from diffusers.image_processor import PipelineImageInput
|
| 9 |
+
from diffusers.pipelines.qwenimage.pipeline_output import QwenImagePipelineOutput
|
| 10 |
+
|
| 11 |
+
from diffusers.pipelines.qwenimage.pipeline_qwenimage_edit import retrieve_latents
|
| 12 |
+
|
| 13 |
+
|
| 14 |
+
def encode_vae_image(pipe, image: torch.Tensor, generator: torch.Generator):
|
| 15 |
+
latent_channels = pipe.vae.config.z_dim if getattr(pipe, "vae", None) else 16
|
| 16 |
+
image_latents = retrieve_latents(
|
| 17 |
+
pipe.vae.encode(image), generator=generator, sample_mode="argmax"
|
| 18 |
+
)
|
| 19 |
+
latents_mean = (
|
| 20 |
+
torch.tensor(pipe.vae.config.latents_mean)
|
| 21 |
+
.view(1, latent_channels, 1, 1, 1)
|
| 22 |
+
.to(image_latents.device, image_latents.dtype)
|
| 23 |
+
)
|
| 24 |
+
latents_std = (
|
| 25 |
+
torch.tensor(pipe.vae.config.latents_std)
|
| 26 |
+
.view(1, latent_channels, 1, 1, 1)
|
| 27 |
+
.to(image_latents.device, image_latents.dtype)
|
| 28 |
+
)
|
| 29 |
+
image_latents = (image_latents - latents_mean) / latents_std
|
| 30 |
+
|
| 31 |
+
return image_latents
|
| 32 |
+
|
| 33 |
+
|
| 34 |
+
@torch.no_grad()
|
| 35 |
+
def encode_image(pipe: QwenImagePipeline, image):
|
| 36 |
+
width, height = image.size
|
| 37 |
+
image = pipe.image_processor.preprocess(image, height, width)
|
| 38 |
+
image = image.to(dtype=pipe.dtype, device=pipe.device).unsqueeze(2)
|
| 39 |
+
image_latents = encode_vae_image(pipe, image, None)
|
| 40 |
+
|
| 41 |
+
image_latent_height, image_latent_width = image_latents.shape[3:]
|
| 42 |
+
image_latents = pipe._pack_latents(
|
| 43 |
+
image_latents,
|
| 44 |
+
1,
|
| 45 |
+
pipe.transformer.config.in_channels // 4,
|
| 46 |
+
image_latent_height,
|
| 47 |
+
image_latent_width,
|
| 48 |
+
)
|
| 49 |
+
return image_latents
|
| 50 |
+
|
| 51 |
+
|
| 52 |
+
@torch.no_grad()
|
| 53 |
+
def decode_latents_image(pipe: QwenImagePipeline, latents):
|
| 54 |
+
latents = pipe._unpack_latents(latents, 1024, 1024, pipe.vae_scale_factor)
|
| 55 |
+
latents = latents.to(pipe.vae.dtype)
|
| 56 |
+
latents_mean = (
|
| 57 |
+
torch.tensor(pipe.vae.config.latents_mean)
|
| 58 |
+
.view(1, pipe.vae.config.z_dim, 1, 1, 1)
|
| 59 |
+
.to(latents.device, latents.dtype)
|
| 60 |
+
)
|
| 61 |
+
latents_std = 1.0 / torch.tensor(pipe.vae.config.latents_std).view(
|
| 62 |
+
1, pipe.vae.config.z_dim, 1, 1, 1
|
| 63 |
+
).to(latents.device, latents.dtype)
|
| 64 |
+
latents = latents / latents_std + latents_mean
|
| 65 |
+
image = pipe.vae.decode(latents, return_dict=False)[0][:, :, 0]
|
| 66 |
+
image = pipe.image_processor.postprocess(image, output_type="pil")
|
| 67 |
+
return image
|
| 68 |
+
|
| 69 |
+
|
| 70 |
+
aspect_ratios = {
|
| 71 |
+
"1:1": (1328, 1328),
|
| 72 |
+
"16:9": (1664, 928),
|
| 73 |
+
"9:16": (928, 1664),
|
| 74 |
+
"4:3": (1472, 1104),
|
| 75 |
+
"3:4": (1104, 1472),
|
| 76 |
+
"3:2": (1584, 1056),
|
| 77 |
+
"2:3": (1056, 1584),
|
| 78 |
+
}
|
| 79 |
+
|
| 80 |
+
|
| 81 |
+
def process_input_img(image):
|
| 82 |
+
# find the closest aspect ratio
|
| 83 |
+
w, h = image.size
|
| 84 |
+
aspect_ratio = w / h
|
| 85 |
+
closest_ratio = min(
|
| 86 |
+
aspect_ratios.items(),
|
| 87 |
+
key=lambda x: abs((x[1][0] / x[1][1]) - aspect_ratio),
|
| 88 |
+
)
|
| 89 |
+
target_size = closest_ratio[1]
|
| 90 |
+
return image.resize(target_size, Image.LANCZOS)
|
| 91 |
+
|
| 92 |
+
|
| 93 |
+
@torch.no_grad()
|
| 94 |
+
def qwen_bridge_gen(
|
| 95 |
+
self: QwenImageEditPipeline,
|
| 96 |
+
image: Optional[PipelineImageInput] = None,
|
| 97 |
+
prompt: Union[str, List[str]] = None,
|
| 98 |
+
negative_prompt: Union[str, List[str]] = None,
|
| 99 |
+
true_cfg_scale: float = 4.0,
|
| 100 |
+
height: Optional[int] = None,
|
| 101 |
+
width: Optional[int] = None,
|
| 102 |
+
num_inference_steps: int = 50,
|
| 103 |
+
guidance_scale: float = 1.0,
|
| 104 |
+
num_images_per_prompt: int = 1,
|
| 105 |
+
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
| 106 |
+
latents: Optional[torch.Tensor] = None,
|
| 107 |
+
prompt_embeds: Optional[torch.Tensor] = None,
|
| 108 |
+
prompt_embeds_mask: Optional[torch.Tensor] = None,
|
| 109 |
+
negative_prompt_embeds: Optional[torch.Tensor] = None,
|
| 110 |
+
negative_prompt_embeds_mask: Optional[torch.Tensor] = None,
|
| 111 |
+
output_type: Optional[str] = "pil",
|
| 112 |
+
return_dict: bool = True,
|
| 113 |
+
attention_kwargs: Optional[Dict[str, Any]] = None,
|
| 114 |
+
callback_on_step_end_tensor_inputs: List[str] = ["latents"],
|
| 115 |
+
max_sequence_length: int = 512,
|
| 116 |
+
# Bridge specific
|
| 117 |
+
return_trajectory=False,
|
| 118 |
+
):
|
| 119 |
+
image_size = image[0].size if isinstance(image, list) else image.size
|
| 120 |
+
calculated_width, calculated_height = image_size
|
| 121 |
+
height = height or calculated_height
|
| 122 |
+
width = width or calculated_width
|
| 123 |
+
|
| 124 |
+
multiple_of = self.vae_scale_factor * 2
|
| 125 |
+
width = width // multiple_of * multiple_of
|
| 126 |
+
height = height // multiple_of * multiple_of
|
| 127 |
+
|
| 128 |
+
# 1. Check inputs. Raise error if not correct
|
| 129 |
+
self.check_inputs(
|
| 130 |
+
prompt,
|
| 131 |
+
height,
|
| 132 |
+
width,
|
| 133 |
+
negative_prompt=negative_prompt,
|
| 134 |
+
prompt_embeds=prompt_embeds,
|
| 135 |
+
negative_prompt_embeds=negative_prompt_embeds,
|
| 136 |
+
prompt_embeds_mask=prompt_embeds_mask,
|
| 137 |
+
negative_prompt_embeds_mask=negative_prompt_embeds_mask,
|
| 138 |
+
callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs,
|
| 139 |
+
max_sequence_length=max_sequence_length,
|
| 140 |
+
)
|
| 141 |
+
|
| 142 |
+
self._guidance_scale = guidance_scale
|
| 143 |
+
self._attention_kwargs = attention_kwargs
|
| 144 |
+
self._current_timestep = None
|
| 145 |
+
self._interrupt = False
|
| 146 |
+
|
| 147 |
+
# 2. Define call parameters
|
| 148 |
+
if prompt is not None and isinstance(prompt, str):
|
| 149 |
+
batch_size = 1
|
| 150 |
+
elif prompt is not None and isinstance(prompt, list):
|
| 151 |
+
batch_size = len(prompt)
|
| 152 |
+
else:
|
| 153 |
+
batch_size = prompt_embeds.shape[0]
|
| 154 |
+
|
| 155 |
+
device = self._execution_device
|
| 156 |
+
# 3. Preprocess image
|
| 157 |
+
if image is not None and not (
|
| 158 |
+
isinstance(image, torch.Tensor) and image.size(1) == self.latent_channels
|
| 159 |
+
):
|
| 160 |
+
image = self.image_processor.resize(image, calculated_height, calculated_width)
|
| 161 |
+
prompt_image = image
|
| 162 |
+
image = self.image_processor.preprocess(
|
| 163 |
+
image, calculated_height, calculated_width
|
| 164 |
+
)
|
| 165 |
+
image = image.unsqueeze(2)
|
| 166 |
+
|
| 167 |
+
has_neg_prompt = negative_prompt is not None or (
|
| 168 |
+
negative_prompt_embeds is not None and negative_prompt_embeds_mask is not None
|
| 169 |
+
)
|
| 170 |
+
do_true_cfg = true_cfg_scale > 1 and has_neg_prompt
|
| 171 |
+
prompt_embeds, prompt_embeds_mask = self.encode_prompt(
|
| 172 |
+
image=prompt_image,
|
| 173 |
+
prompt=prompt,
|
| 174 |
+
prompt_embeds=prompt_embeds,
|
| 175 |
+
prompt_embeds_mask=prompt_embeds_mask,
|
| 176 |
+
device=device,
|
| 177 |
+
num_images_per_prompt=num_images_per_prompt,
|
| 178 |
+
max_sequence_length=max_sequence_length,
|
| 179 |
+
)
|
| 180 |
+
if do_true_cfg:
|
| 181 |
+
negative_prompt_embeds, negative_prompt_embeds_mask = self.encode_prompt(
|
| 182 |
+
image=prompt_image,
|
| 183 |
+
prompt=negative_prompt,
|
| 184 |
+
prompt_embeds=negative_prompt_embeds,
|
| 185 |
+
prompt_embeds_mask=negative_prompt_embeds_mask,
|
| 186 |
+
device=device,
|
| 187 |
+
num_images_per_prompt=num_images_per_prompt,
|
| 188 |
+
max_sequence_length=max_sequence_length,
|
| 189 |
+
)
|
| 190 |
+
|
| 191 |
+
# 4. Prepare latent variables
|
| 192 |
+
num_channels_latents = self.transformer.config.in_channels // 4
|
| 193 |
+
noise, image_latents = self.prepare_latents(
|
| 194 |
+
image,
|
| 195 |
+
batch_size * num_images_per_prompt,
|
| 196 |
+
num_channels_latents,
|
| 197 |
+
height,
|
| 198 |
+
width,
|
| 199 |
+
prompt_embeds.dtype,
|
| 200 |
+
device,
|
| 201 |
+
generator,
|
| 202 |
+
latents,
|
| 203 |
+
)
|
| 204 |
+
latents = image_latents.clone()
|
| 205 |
+
img_shapes = [
|
| 206 |
+
[(1, height // self.vae_scale_factor // 2, width // self.vae_scale_factor // 2)]
|
| 207 |
+
] * batch_size
|
| 208 |
+
|
| 209 |
+
# 5. Prepare timesteps
|
| 210 |
+
self.scheduler.set_timesteps(num_inference_steps, device=device)
|
| 211 |
+
timesteps = self.scheduler.timesteps
|
| 212 |
+
self._num_timesteps = len(timesteps)
|
| 213 |
+
|
| 214 |
+
# handle guidance
|
| 215 |
+
guidance = None
|
| 216 |
+
txt_seq_lens = (
|
| 217 |
+
prompt_embeds_mask.sum(dim=1).tolist()
|
| 218 |
+
if prompt_embeds_mask is not None
|
| 219 |
+
else None
|
| 220 |
+
)
|
| 221 |
+
negative_txt_seq_lens = (
|
| 222 |
+
negative_prompt_embeds_mask.sum(dim=1).tolist()
|
| 223 |
+
if negative_prompt_embeds_mask is not None
|
| 224 |
+
else None
|
| 225 |
+
)
|
| 226 |
+
|
| 227 |
+
trajectory = [latents] if return_trajectory else None
|
| 228 |
+
|
| 229 |
+
# 6. Denoising loop
|
| 230 |
+
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
| 231 |
+
for i, t in enumerate(timesteps):
|
| 232 |
+
if self.interrupt:
|
| 233 |
+
continue
|
| 234 |
+
|
| 235 |
+
self._current_timestep = t
|
| 236 |
+
|
| 237 |
+
latent_model_input = latents
|
| 238 |
+
|
| 239 |
+
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
|
| 240 |
+
timestep = t.expand(latents.shape[0]).to(latents.dtype)
|
| 241 |
+
with self.transformer.cache_context("cond"):
|
| 242 |
+
noise_pred = self.transformer(
|
| 243 |
+
hidden_states=latent_model_input,
|
| 244 |
+
timestep=timestep / 1000,
|
| 245 |
+
guidance=guidance,
|
| 246 |
+
encoder_hidden_states_mask=prompt_embeds_mask,
|
| 247 |
+
encoder_hidden_states=prompt_embeds,
|
| 248 |
+
img_shapes=img_shapes,
|
| 249 |
+
# img_shapes=[[(1, 64, 64)]],
|
| 250 |
+
txt_seq_lens=txt_seq_lens,
|
| 251 |
+
attention_kwargs={},
|
| 252 |
+
return_dict=False,
|
| 253 |
+
)[0]
|
| 254 |
+
noise_pred = noise_pred[:, : latents.size(1)]
|
| 255 |
+
|
| 256 |
+
if do_true_cfg:
|
| 257 |
+
with self.transformer.cache_context("uncond"):
|
| 258 |
+
neg_noise_pred = self.transformer(
|
| 259 |
+
hidden_states=latent_model_input,
|
| 260 |
+
timestep=timestep / 1000,
|
| 261 |
+
guidance=guidance,
|
| 262 |
+
encoder_hidden_states_mask=negative_prompt_embeds_mask,
|
| 263 |
+
encoder_hidden_states=negative_prompt_embeds,
|
| 264 |
+
img_shapes=img_shapes,
|
| 265 |
+
# img_shapes=[[(1, 64, 64)]],
|
| 266 |
+
txt_seq_lens=negative_txt_seq_lens,
|
| 267 |
+
attention_kwargs=self.attention_kwargs,
|
| 268 |
+
return_dict=False,
|
| 269 |
+
)[0]
|
| 270 |
+
neg_noise_pred = neg_noise_pred[:, : latents.size(1)]
|
| 271 |
+
comb_pred = neg_noise_pred + true_cfg_scale * (
|
| 272 |
+
noise_pred - neg_noise_pred
|
| 273 |
+
)
|
| 274 |
+
|
| 275 |
+
cond_norm = torch.norm(noise_pred, dim=-1, keepdim=True)
|
| 276 |
+
noise_norm = torch.norm(comb_pred, dim=-1, keepdim=True)
|
| 277 |
+
noise_pred = comb_pred * (cond_norm / noise_norm)
|
| 278 |
+
|
| 279 |
+
# # step
|
| 280 |
+
# next_t = timesteps[i + 1] if i < len(timesteps) - 1 else 0
|
| 281 |
+
|
| 282 |
+
# sigma_t = t / 1000
|
| 283 |
+
# sigma_next_t = next_t / 1000
|
| 284 |
+
# sigma_delta = sigma_next_t - sigma_t
|
| 285 |
+
# print(
|
| 286 |
+
# f"sigma_t: {sigma_t}, sigma_next_t: {sigma_next_t}, sigma_delta: {sigma_delta}"
|
| 287 |
+
# )
|
| 288 |
+
|
| 289 |
+
# noise = torch.randn(
|
| 290 |
+
# latents.shape,
|
| 291 |
+
# dtype=latents.dtype,
|
| 292 |
+
# device=latents.device,
|
| 293 |
+
# generator=generator,
|
| 294 |
+
# )
|
| 295 |
+
# eta = torch.sqrt(-sigma_delta * sigma_next_t / sigma_t)
|
| 296 |
+
# # eta = torch.sqrt(-sigma_delta)
|
| 297 |
+
|
| 298 |
+
# coef = torch.clip(noise_pred.abs(), 0, 1) if rescale_noise else 1
|
| 299 |
+
# latents = latents + noise_pred * sigma_delta + sigma * eta * noise * coef
|
| 300 |
+
latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0]
|
| 301 |
+
|
| 302 |
+
if return_trajectory:
|
| 303 |
+
trajectory.append(latents)
|
| 304 |
+
|
| 305 |
+
# call the callback, if provided
|
| 306 |
+
progress_bar.update()
|
| 307 |
+
|
| 308 |
+
self._current_timestep = None
|
| 309 |
+
if output_type == "latent":
|
| 310 |
+
image = latents
|
| 311 |
+
else:
|
| 312 |
+
|
| 313 |
+
def decode_latents(latents, height, width):
|
| 314 |
+
latents = self._unpack_latents(
|
| 315 |
+
latents, height, width, self.vae_scale_factor
|
| 316 |
+
)
|
| 317 |
+
latents = latents.to(self.vae.dtype)
|
| 318 |
+
latents_mean = (
|
| 319 |
+
torch.tensor(self.vae.config.latents_mean)
|
| 320 |
+
.view(1, self.vae.config.z_dim, 1, 1, 1)
|
| 321 |
+
.to(latents.device, latents.dtype)
|
| 322 |
+
)
|
| 323 |
+
latents_std = 1.0 / torch.tensor(self.vae.config.latents_std).view(
|
| 324 |
+
1, self.vae.config.z_dim, 1, 1, 1
|
| 325 |
+
).to(latents.device, latents.dtype)
|
| 326 |
+
latents = latents / latents_std + latents_mean
|
| 327 |
+
image = self.vae.decode(latents, return_dict=False)[0][:, :, 0]
|
| 328 |
+
image = self.image_processor.postprocess(image, output_type=output_type)
|
| 329 |
+
return image
|
| 330 |
+
|
| 331 |
+
image = decode_latents(latents, height, width)
|
| 332 |
+
trajectory = (
|
| 333 |
+
[decode_latents(t, height, width)[0] for t in trajectory]
|
| 334 |
+
if return_trajectory
|
| 335 |
+
else None
|
| 336 |
+
)
|
| 337 |
+
|
| 338 |
+
# Offload all models
|
| 339 |
+
self.maybe_free_model_hooks()
|
| 340 |
+
|
| 341 |
+
if not return_dict:
|
| 342 |
+
return (image,)
|
| 343 |
+
|
| 344 |
+
if return_trajectory:
|
| 345 |
+
return QwenImagePipelineOutput(images=image), trajectory
|
| 346 |
+
else:
|
| 347 |
+
return QwenImagePipelineOutput(images=image)
|
vibt/scheduler.py
ADDED
|
@@ -0,0 +1,44 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from diffusers.schedulers import UniPCMultistepScheduler
|
| 2 |
+
import torch
|
| 3 |
+
|
| 4 |
+
|
| 5 |
+
class ViBTScheduler(UniPCMultistepScheduler):
|
| 6 |
+
def __init__(self, **kwargs):
|
| 7 |
+
super().__init__(**{**kwargs, "use_flow_sigmas": True})
|
| 8 |
+
self.set_parameters()
|
| 9 |
+
|
| 10 |
+
def set_parameters(self, noise_scale=1.0, shift_gamma=5.0, seed=None):
|
| 11 |
+
self.noise_scale = noise_scale
|
| 12 |
+
self.config.flow_shift = shift_gamma
|
| 13 |
+
self.generator = (
|
| 14 |
+
None if seed is None else torch.Generator("cuda").manual_seed(seed)
|
| 15 |
+
)
|
| 16 |
+
|
| 17 |
+
def step(self, model_output, timestep, sample, **kwargs):
|
| 18 |
+
delta_t = (
|
| 19 |
+
max(self.timesteps[self.timesteps < timestep]) - timestep
|
| 20 |
+
if any(self.timesteps < timestep)
|
| 21 |
+
else -timestep - 1
|
| 22 |
+
) / 1000
|
| 23 |
+
|
| 24 |
+
current_t = (timestep + 1) / 1000.0
|
| 25 |
+
eta = (-delta_t * (current_t + delta_t) / current_t) ** 0.5
|
| 26 |
+
|
| 27 |
+
noise = torch.randn(
|
| 28 |
+
sample.shape,
|
| 29 |
+
generator=self.generator,
|
| 30 |
+
device=sample.device,
|
| 31 |
+
dtype=sample.dtype,
|
| 32 |
+
)
|
| 33 |
+
latents = sample + delta_t * model_output + eta * self.noise_scale * noise
|
| 34 |
+
|
| 35 |
+
return (latents,)
|
| 36 |
+
|
| 37 |
+
@classmethod
|
| 38 |
+
def from_scheduler(
|
| 39 |
+
cls, scheduler: UniPCMultistepScheduler, noise_scale=1.0, shift_gamma=5.0
|
| 40 |
+
):
|
| 41 |
+
obj = cls.__new__(cls)
|
| 42 |
+
obj.__dict__ = scheduler.__dict__.copy()
|
| 43 |
+
obj.set_parameters(noise_scale, shift_gamma)
|
| 44 |
+
return obj
|
vibt/wan.py
ADDED
|
@@ -0,0 +1,132 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import re
|
| 3 |
+
from diffusers import WanPipeline
|
| 4 |
+
from safetensors.torch import load_file
|
| 5 |
+
from huggingface_hub import hf_hub_download
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
@torch.no_grad()
|
| 9 |
+
def encode_video(pipe: WanPipeline, video_frames):
|
| 10 |
+
video_tensor = pipe.video_processor.preprocess_video(video_frames).to(
|
| 11 |
+
dtype=pipe.dtype, device=pipe.device
|
| 12 |
+
)
|
| 13 |
+
posterior = pipe.vae.encode(video_tensor, return_dict=False)[0]
|
| 14 |
+
z = posterior.mode()
|
| 15 |
+
latents_mean = (
|
| 16 |
+
torch.tensor(pipe.vae.config.latents_mean)
|
| 17 |
+
.view(1, pipe.vae.config.z_dim, 1, 1, 1)
|
| 18 |
+
.to(z.device, z.dtype)
|
| 19 |
+
)
|
| 20 |
+
latents_std = 1.0 / torch.tensor(pipe.vae.config.latents_std).view(
|
| 21 |
+
1, pipe.vae.config.z_dim, 1, 1, 1
|
| 22 |
+
).to(z.device, z.dtype)
|
| 23 |
+
latents = (z - latents_mean) * latents_std
|
| 24 |
+
return latents
|
| 25 |
+
|
| 26 |
+
|
| 27 |
+
@torch.no_grad()
|
| 28 |
+
def decode_latents(pipe: WanPipeline, latents):
|
| 29 |
+
latents = latents.to(pipe.vae.dtype)
|
| 30 |
+
latents_mean = (
|
| 31 |
+
torch.tensor(pipe.vae.config.latents_mean)
|
| 32 |
+
.view(1, pipe.vae.config.z_dim, 1, 1, 1)
|
| 33 |
+
.to(latents.device, latents.dtype)
|
| 34 |
+
)
|
| 35 |
+
latents_std = 1.0 / torch.tensor(pipe.vae.config.latents_std).view(
|
| 36 |
+
1, pipe.vae.config.z_dim, 1, 1, 1
|
| 37 |
+
).to(latents.device, latents.dtype)
|
| 38 |
+
latents = latents / latents_std + latents_mean
|
| 39 |
+
video = pipe.vae.decode(latents, return_dict=False)[0]
|
| 40 |
+
video = pipe.video_processor.postprocess_video(video, output_type="np")
|
| 41 |
+
return video
|
| 42 |
+
|
| 43 |
+
|
| 44 |
+
def name_convert(n: str):
|
| 45 |
+
# blocks.* attention
|
| 46 |
+
m = re.match(
|
| 47 |
+
r"blocks\.(\d+)\.(self_attn|cross_attn)\.(q|k|v|o|norm_k|norm_q)\.(weight|bias)",
|
| 48 |
+
n,
|
| 49 |
+
)
|
| 50 |
+
if m:
|
| 51 |
+
b, kind, comp, suf = m.groups()
|
| 52 |
+
attn = "attn1" if kind == "self_attn" else "attn2"
|
| 53 |
+
if comp in ("q", "k", "v"):
|
| 54 |
+
return f"blocks.{b}.{attn}.to_{comp}.{suf}"
|
| 55 |
+
if comp == "o":
|
| 56 |
+
return f"blocks.{b}.{attn}.to_out.0.{suf}"
|
| 57 |
+
return f"blocks.{b}.{attn}.{comp}.{suf}"
|
| 58 |
+
|
| 59 |
+
# blocks.* ffn
|
| 60 |
+
m = re.match(r"blocks\.(\d+)\.ffn\.(0|2)\.(weight|bias)", n)
|
| 61 |
+
if m:
|
| 62 |
+
b, idx, suf = m.groups()
|
| 63 |
+
if idx == "0":
|
| 64 |
+
return f"blocks.{b}.ffn.net.0.proj.{suf}"
|
| 65 |
+
return f"blocks.{b}.ffn.net.2.{suf}"
|
| 66 |
+
|
| 67 |
+
# blocks.* norm3/modulation
|
| 68 |
+
m = re.match(r"blocks\.(\d+)\.norm3\.(weight|bias)", n)
|
| 69 |
+
if m:
|
| 70 |
+
b, suf = m.groups()
|
| 71 |
+
return f"blocks.{b}.norm2.{suf}"
|
| 72 |
+
|
| 73 |
+
m = re.match(r"blocks\.(\d+)\.modulation$", n)
|
| 74 |
+
if m:
|
| 75 |
+
b = m.group(1)
|
| 76 |
+
return f"blocks.{b}.scale_shift_table"
|
| 77 |
+
|
| 78 |
+
# patch_embedding
|
| 79 |
+
if n.startswith("patch_embedding."):
|
| 80 |
+
return n
|
| 81 |
+
|
| 82 |
+
# text / time embedding
|
| 83 |
+
m = re.match(r"text_embedding\.(0|2)\.(weight|bias)", n)
|
| 84 |
+
if m:
|
| 85 |
+
idx, suf = m.groups()
|
| 86 |
+
lin = "linear_1" if idx == "0" else "linear_2"
|
| 87 |
+
return f"condition_embedder.text_embedder.{lin}.{suf}"
|
| 88 |
+
|
| 89 |
+
m = re.match(r"time_embedding\.(0|2)\.(weight|bias)", n)
|
| 90 |
+
if m:
|
| 91 |
+
idx, suf = m.groups()
|
| 92 |
+
lin = "linear_1" if idx == "0" else "linear_2"
|
| 93 |
+
return f"condition_embedder.time_embedder.{lin}.{suf}"
|
| 94 |
+
|
| 95 |
+
m = re.match(r"time_projection\.1\.(weight|bias)", n)
|
| 96 |
+
if m:
|
| 97 |
+
suf = m.group(1)
|
| 98 |
+
return f"condition_embedder.time_proj.{suf}"
|
| 99 |
+
|
| 100 |
+
# head
|
| 101 |
+
if n == "head.head.weight":
|
| 102 |
+
return "proj_out.weight"
|
| 103 |
+
if n == "head.head.bias":
|
| 104 |
+
return "proj_out.bias"
|
| 105 |
+
if n == "head.modulation":
|
| 106 |
+
return "scale_shift_table"
|
| 107 |
+
|
| 108 |
+
return n
|
| 109 |
+
|
| 110 |
+
|
| 111 |
+
def load_vibt_weight(
|
| 112 |
+
transformer, repo_name="Yuanshi/Bridge", weight_path=None, local_path=None
|
| 113 |
+
):
|
| 114 |
+
assert (
|
| 115 |
+
weight_path or local_path
|
| 116 |
+
) is not None, "Either weight_path or local_path must be provided."
|
| 117 |
+
|
| 118 |
+
tensors = load_file(local_path or hf_hub_download(repo_name, weight_path))
|
| 119 |
+
|
| 120 |
+
new_tensors = {}
|
| 121 |
+
|
| 122 |
+
for key, value in tensors.items():
|
| 123 |
+
key = name_convert(key)
|
| 124 |
+
new_tensors[key] = value
|
| 125 |
+
|
| 126 |
+
for name, param in transformer.named_parameters():
|
| 127 |
+
device, dtype = param.device, param.dtype
|
| 128 |
+
if name in new_tensors:
|
| 129 |
+
assert (
|
| 130 |
+
param.shape == new_tensors[name].shape
|
| 131 |
+
), f"{name}: {param.shape} != {new_tensors[name].shape}"
|
| 132 |
+
param.data = new_tensors[name].to(device=device, dtype=dtype)
|