Spaces:
Runtime error
Runtime error
import torch | |
import torch.nn as nn | |
import warnings | |
from torch.autograd import Function | |
from typing import * | |
try: | |
import pointnet2_ops._ext as _ext | |
except ImportError: | |
from torch.utils.cpp_extension import load | |
import glob | |
import os.path as osp | |
import os | |
warnings.warn("Unable to load pointnet2_ops cpp extension. JIT Compiling.") | |
_ext_src_root = osp.join(osp.dirname(__file__), "_ext-src") | |
_ext_sources = glob.glob(osp.join(_ext_src_root, "src", "*.cpp")) + glob.glob( | |
osp.join(_ext_src_root, "src", "*.cu") | |
) | |
_ext_headers = glob.glob(osp.join(_ext_src_root, "include", "*")) | |
os.environ["TORCH_CUDA_ARCH_LIST"] = "3.7+PTX;5.0;6.0;6.1;6.2;7.0;7.5" | |
_ext = load( | |
"_ext", | |
sources=_ext_sources, | |
extra_include_paths=[osp.join(_ext_src_root, "include")], | |
extra_cflags=["-O3"], | |
extra_cuda_cflags=["-O3", "-Xfatbin", "-compress-all"], | |
with_cuda=True, | |
) | |
class FurthestPointSampling(Function): | |
def forward(ctx, xyz, npoint): | |
# type: (Any, torch.Tensor, int) -> torch.Tensor | |
r""" | |
Uses iterative furthest point sampling to select a set of npoint features that have the largest | |
minimum distance | |
Parameters | |
---------- | |
xyz : torch.Tensor | |
(B, N, 3) tensor where N > npoint | |
npoint : int32 | |
number of features in the sampled set | |
Returns | |
------- | |
torch.Tensor | |
(B, npoint) tensor containing the set | |
""" | |
out = _ext.furthest_point_sampling(xyz, npoint) | |
ctx.mark_non_differentiable(out) | |
return out | |
def backward(ctx, grad_out): | |
return () | |
furthest_point_sample = FurthestPointSampling.apply | |
class GatherOperation(Function): | |
def forward(ctx, features, idx): | |
# type: (Any, torch.Tensor, torch.Tensor) -> torch.Tensor | |
r""" | |
Parameters | |
---------- | |
features : torch.Tensor | |
(B, C, N) tensor | |
idx : torch.Tensor | |
(B, npoint) tensor of the features to gather | |
Returns | |
------- | |
torch.Tensor | |
(B, C, npoint) tensor | |
""" | |
ctx.save_for_backward(idx, features) | |
return _ext.gather_points(features, idx) | |
def backward(ctx, grad_out): | |
idx, features = ctx.saved_tensors | |
N = features.size(2) | |
grad_features = _ext.gather_points_grad(grad_out.contiguous(), idx, N) | |
return grad_features, None | |
gather_operation = GatherOperation.apply | |
class ThreeNN(Function): | |
def forward(ctx, unknown, known): | |
# type: (Any, torch.Tensor, torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor] | |
r""" | |
Find the three nearest neighbors of unknown in known | |
Parameters | |
---------- | |
unknown : torch.Tensor | |
(B, n, 3) tensor of known features | |
known : torch.Tensor | |
(B, m, 3) tensor of unknown features | |
Returns | |
------- | |
dist : torch.Tensor | |
(B, n, 3) l2 distance to the three nearest neighbors | |
idx : torch.Tensor | |
(B, n, 3) index of 3 nearest neighbors | |
""" | |
dist2, idx = _ext.three_nn(unknown, known) | |
dist = torch.sqrt(dist2) | |
ctx.mark_non_differentiable(dist, idx) | |
return dist, idx | |
def backward(ctx, grad_dist, grad_idx): | |
return () | |
three_nn = ThreeNN.apply | |
class ThreeInterpolate(Function): | |
def forward(ctx, features, idx, weight): | |
# type(Any, torch.Tensor, torch.Tensor, torch.Tensor) -> Torch.Tensor | |
r""" | |
Performs weight linear interpolation on 3 features | |
Parameters | |
---------- | |
features : torch.Tensor | |
(B, c, m) Features descriptors to be interpolated from | |
idx : torch.Tensor | |
(B, n, 3) three nearest neighbors of the target features in features | |
weight : torch.Tensor | |
(B, n, 3) weights | |
Returns | |
------- | |
torch.Tensor | |
(B, c, n) tensor of the interpolated features | |
""" | |
ctx.save_for_backward(idx, weight, features) | |
return _ext.three_interpolate(features, idx, weight) | |
def backward(ctx, grad_out): | |
# type: (Any, torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor] | |
r""" | |
Parameters | |
---------- | |
grad_out : torch.Tensor | |
(B, c, n) tensor with gradients of ouputs | |
Returns | |
------- | |
grad_features : torch.Tensor | |
(B, c, m) tensor with gradients of features | |
None | |
None | |
""" | |
idx, weight, features = ctx.saved_tensors | |
m = features.size(2) | |
grad_features = _ext.three_interpolate_grad( | |
grad_out.contiguous(), idx, weight, m | |
) | |
return grad_features, torch.zeros_like(idx), torch.zeros_like(weight) | |
three_interpolate = ThreeInterpolate.apply | |
class GroupingOperation(Function): | |
def forward(ctx, features, idx): | |
# type: (Any, torch.Tensor, torch.Tensor) -> torch.Tensor | |
r""" | |
Parameters | |
---------- | |
features : torch.Tensor | |
(B, C, N) tensor of features to group | |
idx : torch.Tensor | |
(B, npoint, nsample) tensor containing the indicies of features to group with | |
Returns | |
------- | |
torch.Tensor | |
(B, C, npoint, nsample) tensor | |
""" | |
ctx.save_for_backward(idx, features) | |
return _ext.group_points(features, idx) | |
def backward(ctx, grad_out): | |
# type: (Any, torch.tensor) -> Tuple[torch.Tensor, torch.Tensor] | |
r""" | |
Parameters | |
---------- | |
grad_out : torch.Tensor | |
(B, C, npoint, nsample) tensor of the gradients of the output from forward | |
Returns | |
------- | |
torch.Tensor | |
(B, C, N) gradient of the features | |
None | |
""" | |
idx, features = ctx.saved_tensors | |
N = features.size(2) | |
grad_features = _ext.group_points_grad(grad_out.contiguous(), idx, N) | |
return grad_features, torch.zeros_like(idx) | |
grouping_operation = GroupingOperation.apply | |
class BallQuery(Function): | |
def forward(ctx, radius, nsample, xyz, new_xyz): | |
# type: (Any, float, int, torch.Tensor, torch.Tensor) -> torch.Tensor | |
r""" | |
Parameters | |
---------- | |
radius : float | |
radius of the balls | |
nsample : int | |
maximum number of features in the balls | |
xyz : torch.Tensor | |
(B, N, 3) xyz coordinates of the features | |
new_xyz : torch.Tensor | |
(B, npoint, 3) centers of the ball query | |
Returns | |
------- | |
torch.Tensor | |
(B, npoint, nsample) tensor with the indicies of the features that form the query balls | |
""" | |
output = _ext.ball_query(new_xyz, xyz, radius, nsample) | |
ctx.mark_non_differentiable(output) | |
return output | |
def backward(ctx, grad_out): | |
return () | |
ball_query = BallQuery.apply | |
class QueryAndGroup(nn.Module): | |
r""" | |
Groups with a ball query of radius | |
Parameters | |
--------- | |
radius : float32 | |
Radius of ball | |
nsample : int32 | |
Maximum number of features to gather in the ball | |
""" | |
def __init__(self, radius, nsample, use_xyz=True): | |
# type: (QueryAndGroup, float, int, bool) -> None | |
super(QueryAndGroup, self).__init__() | |
self.radius, self.nsample, self.use_xyz = radius, nsample, use_xyz | |
def forward(self, xyz, new_xyz, features=None): | |
# type: (QueryAndGroup, torch.Tensor. torch.Tensor, torch.Tensor) -> Tuple[Torch.Tensor] | |
r""" | |
Parameters | |
---------- | |
xyz : torch.Tensor | |
xyz coordinates of the features (B, N, 3) | |
new_xyz : torch.Tensor | |
centriods (B, npoint, 3) | |
features : torch.Tensor | |
Descriptors of the features (B, C, N) | |
Returns | |
------- | |
new_features : torch.Tensor | |
(B, 3 + C, npoint, nsample) tensor | |
""" | |
idx = ball_query(self.radius, self.nsample, xyz, new_xyz) | |
xyz_trans = xyz.transpose(1, 2).contiguous() | |
grouped_xyz = grouping_operation(xyz_trans, idx) # (B, 3, npoint, nsample) | |
grouped_xyz -= new_xyz.transpose(1, 2).unsqueeze(-1) | |
if features is not None: | |
grouped_features = grouping_operation(features, idx) | |
if self.use_xyz: | |
new_features = torch.cat( | |
[grouped_xyz, grouped_features], dim=1 | |
) # (B, C + 3, npoint, nsample) | |
else: | |
new_features = grouped_features | |
else: | |
assert ( | |
self.use_xyz | |
), "Cannot have not features and not use xyz as a feature!" | |
new_features = grouped_xyz | |
return new_features | |
class GroupAll(nn.Module): | |
r""" | |
Groups all features | |
Parameters | |
--------- | |
""" | |
def __init__(self, use_xyz=True): | |
# type: (GroupAll, bool) -> None | |
super(GroupAll, self).__init__() | |
self.use_xyz = use_xyz | |
def forward(self, xyz, new_xyz, features=None): | |
# type: (GroupAll, torch.Tensor, torch.Tensor, torch.Tensor) -> Tuple[torch.Tensor] | |
r""" | |
Parameters | |
---------- | |
xyz : torch.Tensor | |
xyz coordinates of the features (B, N, 3) | |
new_xyz : torch.Tensor | |
Ignored | |
features : torch.Tensor | |
Descriptors of the features (B, C, N) | |
Returns | |
------- | |
new_features : torch.Tensor | |
(B, C + 3, 1, N) tensor | |
""" | |
grouped_xyz = xyz.transpose(1, 2).unsqueeze(2) | |
if features is not None: | |
grouped_features = features.unsqueeze(2) | |
if self.use_xyz: | |
new_features = torch.cat( | |
[grouped_xyz, grouped_features], dim=1 | |
) # (B, 3 + C, 1, N) | |
else: | |
new_features = grouped_features | |
else: | |
new_features = grouped_xyz | |
return new_features | |