Spaces:
Runtime error
Runtime error
import torch | |
from pathlib import Path | |
from typing import Optional | |
from lightning_fabric import seed_everything | |
from huggingface_hub import hf_hub_download | |
from diffusion.diffusion_model import Diffusion_condition | |
''' | |
Steps to make a model: | |
1. Set up the model structure depending on the modal | |
2. Set up AutoEncoder weights | |
3. Set up Diffusor weights | |
*. Set up the condition flag (Should be deleted in the future) | |
4. Pick a random seed | |
**. Designate the output folder (Also should be deleted in the future, this is not the responsibility of a model!) | |
''' | |
class ModelBuilder(): | |
NUM_PROPOSALS = 32 | |
def __init__(self): | |
self.reset() | |
def set_up_model_template(self, model_class: Diffusion_condition): | |
# This shouldn't exist due to the Diffusion_condition's inheritence | |
self._model_class = model_class | |
# Theoretically, this function should be the true Builder API | |
# def set_up_modal(self, modal: Diffusion_condition): | |
# # Set up the modal for the model(pc, txt, sketch, svr, mvr) | |
# self._model_instance = modal | |
def setup_autoencoder_weights(self, weights_path: Path | str): | |
self._config["autoencoder_weights"] = weights_path | |
def setup_diffusion_weights(self, weights_path: Path | str): | |
self._config["diffusion_weights"] = weights_path | |
def setup_condition(self, condition: str): | |
self._config["condition"] = [condition] | |
def setup_seed(self, seed: Optional[int] = None): | |
if seed is not None: | |
seed_everything(seed) | |
else: | |
seed_everything(0) | |
def setup_output_dir(self, output_dir: Path | str): | |
self._config["output_dir"] = output_dir | |
def make_model(self, device: Optional[torch.device] = None): | |
# Torch condition | |
torch.backends.cudnn.benchmark = False | |
torch.set_float32_matmul_precision("medium") | |
# Device | |
if device is None: | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
# Set up modal for the model | |
# (Need to be refactored in the future) | |
self._model_instance = self._model_class(self._config) | |
# Load diffusion weights | |
repo_id = Path(self._config["diffusion_weights"]).parent.as_posix() | |
model_name = Path(self._config["diffusion_weights"]).name | |
model_weights = hf_hub_download(repo_id=repo_id, filename=model_name) | |
diffusion_weights = torch.load(model_weights, map_location=device, weights_only=False)["state_dict"] | |
diffusion_weights = {k: v for k, v in diffusion_weights.items() if "ae_model" not in k} | |
diffusion_weights = {k[6:]: v for k, v in diffusion_weights.items() if "model" in k} | |
# Load Autoencoder weights | |
AE_repo_id = Path(self._config["autoencoder_weights"]).parent.as_posix() | |
AE_model_name = Path(self._config["autoencoder_weights"]).name | |
AE_model_weights = hf_hub_download(repo_id=AE_repo_id, filename=AE_model_name) | |
autoencoder_weights = torch.load(AE_model_weights, map_location=device, weights_only=False)["state_dict"] | |
autoencoder_weights = {k[6:]: v for k, v in autoencoder_weights.items() if "model" in k} | |
autoencoder_weights = {"ae_model."+k: v for k, v in autoencoder_weights.items()} | |
# Combine ae with diffusor | |
diffusion_weights.update(autoencoder_weights) | |
diffusion_weights = {k: v for k, v in diffusion_weights.items() if "camera_embedding" not in k} | |
self._model_instance.load_state_dict(diffusion_weights, strict=False) | |
self._model_instance.to(device) | |
self._model_instance.eval() | |
return self._model_instance | |
def reset(self): | |
self._model_class = Diffusion_condition # This shouldn't exist. See set_up_model_template() | |
self._model_instance = None | |
# Basic model config() | |
self._config = { | |
"name": "Diffusion_condition", | |
"train_decoder": False, | |
"stored_z": False, | |
"use_mean": True, | |
"diffusion_latent": 768, | |
"diffusion_type": "epsilon", | |
"loss": "l2", | |
"pad_method": "random", | |
"num_max_faces": 30, | |
"beta_schedule": "squaredcos_cap_v2", | |
"beta_start": 0.0001, | |
"beta_end": 0.02, | |
"variance_type": "fixed_small", | |
"addition_tag": False, | |
"autoencoder": "AutoEncoder_1119_light", | |
"with_intersection": True, | |
"dim_latent": 8, | |
"dim_shape": 768, | |
"sigmoid": False, | |
"in_channels": 6, | |
"gaussian_weights": 1e-6, | |
"norm": "layer", | |
"autoencoder_weights": "", | |
"is_aug": False, | |
"condition": [], | |
"cond_prob": [] | |
} | |
def model(self): | |
model = self._model_instance | |
return model |