HoLa-BRep / app /DataProcessor /PointCloudProcessor.py
YuXingyao's picture
fresh start
7b127f4
import torch
import numpy as np
import open3d as o3d
from pathlib import Path
from app.DataProcessor.DataProcessor import DataProcessor
'''
Raw Data should be a Pathlike or str path, accept file path only
'''
class PointCloudProcessor(DataProcessor):
PC_DOWNSAMPLE_NUM = 4096
def process_input_data(self, pc_file_path):
points_tensor = self._get_point_cloud_tensor(Path(pc_file_path[0]))
return {"points" : points_tensor[None, None, :, :].repeat(self.NUM_PROPOSALS, 1, 1, 1)}
def _get_point_cloud_tensor(self, input_file: Path | str) -> torch.Tensor:
# Read point cloud
pcd = o3d.io.read_point_cloud(input_file)
points = np.array(pcd.points)
# Check normals
if pcd.has_normals():
normals = np.array(pcd.normals)
else:
normals = np.zeros_like(points)
# Concatenate points and normals
points = np.concatenate([self._normalize_points(points), normals], axis=1)
# Downsample
index = np.random.choice(points.shape[0], self.PC_DOWNSAMPLE_NUM, replace=False)
points = points[index]
return torch.tensor(points, dtype=torch.float32).to(self._device)
def _normalize_points(self, points):
bbox_min = np.min(points, axis=0)
bbox_max = np.max(points, axis=0)
center = (bbox_min + bbox_max) / 2
points -= center
scale = np.max(bbox_max - bbox_min)
points /= scale
points *= 0.9 * 2
return points