Spaces:
Running
on
T4
Running
on
T4
import torch | |
import numpy as np | |
import open3d as o3d | |
from pathlib import Path | |
from app.DataProcessor.DataProcessor import DataProcessor | |
''' | |
Raw Data should be a Pathlike or str path, accept file path only | |
''' | |
class PointCloudProcessor(DataProcessor): | |
PC_DOWNSAMPLE_NUM = 4096 | |
def process_input_data(self, pc_file_path): | |
points_tensor = self._get_point_cloud_tensor(Path(pc_file_path[0])) | |
return {"points" : points_tensor[None, None, :, :].repeat(self.NUM_PROPOSALS, 1, 1, 1)} | |
def _get_point_cloud_tensor(self, input_file: Path | str) -> torch.Tensor: | |
# Read point cloud | |
pcd = o3d.io.read_point_cloud(input_file) | |
points = np.array(pcd.points) | |
# Check normals | |
if pcd.has_normals(): | |
normals = np.array(pcd.normals) | |
else: | |
normals = np.zeros_like(points) | |
# Concatenate points and normals | |
points = np.concatenate([self._normalize_points(points), normals], axis=1) | |
# Downsample | |
index = np.random.choice(points.shape[0], self.PC_DOWNSAMPLE_NUM, replace=False) | |
points = points[index] | |
return torch.tensor(points, dtype=torch.float32).to(self._device) | |
def _normalize_points(self, points): | |
bbox_min = np.min(points, axis=0) | |
bbox_max = np.max(points, axis=0) | |
center = (bbox_min + bbox_max) / 2 | |
points -= center | |
scale = np.max(bbox_max - bbox_min) | |
points /= scale | |
points *= 0.9 * 2 | |
return points |