Spaces:
Sleeping
Sleeping
import pandas as pd | |
import torch | |
from sentence_transformers import SentenceTransformer, util | |
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline | |
import gradio as gr | |
import json | |
import faiss | |
import numpy as np | |
import spaces | |
# Ensure you have GPU support | |
device = 'cuda' if torch.cuda.is_available() else 'cpu' | |
# Load the CSV file with embeddings | |
df = pd.read_csv('RBDx10kstats.csv') | |
df['embedding'] = df['embedding'].apply(json.loads) # Convert JSON string back to list | |
# Convert embeddings to a numpy array | |
embeddings = np.array(df['embedding'].tolist(), dtype='float32') | |
# Setup FAISS | |
index = faiss.IndexFlatL2(embeddings.shape[1]) # dimension should match the embedding size | |
index.add(embeddings) | |
# Load the Sentence Transformer model | |
sentence_model = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2', device=device) | |
# Load the LLaMA model for response generation | |
llama_tokenizer = AutoTokenizer.from_pretrained("openai-community/gpt2") | |
llama_model = AutoModelForCausalLM.from_pretrained("openai-community/gpt2").to(device) | |
# Load the summarization model | |
summarizer = pipeline("summarization", model="facebook/bart-large-cnn", device=0 if device == 'cuda' else -1) | |
# Define the function to find the most relevant document using FAISS | |
def retrieve_relevant_doc(query): | |
query_embedding = sentence_model.encode(query, convert_to_tensor=False) | |
_, indices = index.search(np.array([query_embedding]), k=1) | |
best_match_idx = indices[0][0] | |
return df.iloc[best_match_idx]['Abstract'] | |
# Define the function to generate a response | |
def generate_response(query): | |
relevant_doc = retrieve_relevant_doc(query) | |
if len(relevant_doc) > 512: # Truncate long documents | |
relevant_doc = summarizer(relevant_doc, max_length=4096, min_length=50, do_sample=False)[0]['summary_text'] | |
input_text = f"Document: {relevant_doc}\n\nQuestion: {query}\n\nAnswer:" | |
inputs = llama_tokenizer(input_text, return_tensors="pt").to(device) | |
# Set pad_token_id to eos_token_id to avoid the warning | |
pad_token_id = llama_tokenizer.eos_token_id | |
outputs = llama_model.generate( | |
inputs["input_ids"], | |
attention_mask=inputs["attention_mask"], | |
max_length=512, | |
pad_token_id=pad_token_id | |
) | |
response = llama_tokenizer.decode(outputs[0], skip_special_tokens=True) | |
return response | |
# Create a Gradio interface | |
iface = gr.Interface( | |
fn=generate_response, | |
inputs=gr.Textbox(lines=2, placeholder="Enter your query here..."), | |
outputs="text", | |
title="RAG Chatbot", | |
description="This chatbot retrieves relevant documents based on your query and generates responses using LLaMA." | |
) | |
# Launch the Gradio interface | |
iface.launch() |