Spaces:
Runtime error
Runtime error
| import gradio as gr | |
| import pandas as pd | |
| import spaces | |
| from transformers import RagTokenizer, RagRetriever, RagTokenForGeneration | |
| # Load the tokenizer and retriever | |
| tokenizer = RagTokenizer.from_pretrained("facebook/rag-token-nq") | |
| retriever = RagRetriever.from_pretrained("facebook/rag-token-nq", use_dummy_dataset=True) | |
| # Load the model | |
| model = RagTokenForGeneration.from_pretrained("facebook/rag-token-nq", retriever=retriever) | |
| # Tokenize the contexts and responses | |
| inputs = tokenizer(contexts, return_tensors='pt', padding=True, truncation=True) | |
| labels = tokenizer(responses, return_tensors='pt', padding=True, truncation=True) | |
| # Extract the abstracts | |
| abstracts = df['Abstract'].dropna().tolist() | |
| # Load your dataset | |
| df = pd.read_csv('10kstats.csv') | |
| # Generate context-response pairs (abstract-question pairs) | |
| # Here we use the abstracts as contexts and simulate questions | |
| contexts = abstracts | |
| responses = ["Can you tell me more about this research?" for _ in abstracts] | |
| def generate_response(input_text): | |
| input_ids = tokenizer([input_text], return_tensors='pt')['input_ids'] | |
| outputs = model.generate(input_ids) | |
| response = tokenizer.batch_decode(outputs, skip_special_tokens=True)[0] | |
| return response | |
| # Create the Gradio interface | |
| iface = gr.Interface( | |
| fn=generate_response, | |
| inputs="text", | |
| outputs="text", | |
| title="RAG Chatbot", | |
| description="A chatbot powered by Retrieval-Augmented Generation (RAG) model." | |
| ) | |
| # Launch the interface | |
| iface.launch() |