StoryAI / app.py
Youssefk's picture
Update app.py
6d567db
raw
history blame
28.5 kB
import streamlit as st
from streamlit_chat import message
import requests
from transformers import AutoModelWithLMHead, AutoTokenizer
# tokenizer = AutoTokenizer.from_pretrained('microsoft/DialoGPT-small')
# model = AutoModelWithLMHead.from_pretrained('model.py')
# -*- coding: utf-8 -*-
import pandas as pd
data = {'Question': ['What is the story about?',
'Who is the Phantom Thief Kid?',
'What did the police deduce about Kid\'s next target?',
'What happened during the heist?',
'Who did Conan and Heiji suspect to be the person who shot Kid?',
'Who was murdered after the heist and how did it happen?',
'Who did the police initially suspect for the murder and who did Conan conclude was the culprit?',
'What did Conan deduce about Scorpion\'s next target?',
'Who did Conan suspect to be Scorpion and why?',
'How did Conan prevent Seiran from killing him?',
'Who did Conan suspect Shiratori to be?',
'What happened at the end of the story?'],
'Answer': ['The story is about the Phantom Thief Kid\'s heist of the Fabergé egg from the Suzuki Modern Art Museum, his apparent death after being shot, and the subsequent investigation to find his killer and recover the stolen egg.',
'The Phantom Thief Kid is a notorious thief who specializes in stealing high-profile objects and has a signature calling card left at the scene of the crime.',
'The police deduced that Kid\'s next target would be the recently discovered Fabergé egg, which would be displayed at the Suzuki Modern Art Museum in Osaka on August 22.',
'Kid successfully stole the egg and fled with Conan and Heiji in pursuit. However, an unknown assailant shot Kid in the right eye, causing him to fall into the sea and apparently die. The police recovered the egg but could not find Kid\'s body.',
'Conan and Heiji initially suspected Sonoko\'s father\'s servant, Mr. Nishino, to be the person who shot Kid.',
'Ryu Sagawa, a freelance photographer covering the press with news of the egg, was murdered after the heist. He was shot in the right eye in the same fashion as Kid.',
'The police initially suspected Sonoko\'s father\'s servant, Mr. Nishino, for the murder, but Conan concluded that the culprit was Scorpion - a mysterious killer who always shoots his victims in the right eye.',
'Conan deduced that Scorpion\'s next target was the second egg, which was located at Yokosuka Castle.',
'Conan suspected Scorpion to be Seiran the historian because she had a personal vendetta against Kid and had access to information about the second egg.',
'Conan prevented Seiran from killing him by wearing bulletproof glass on his glasses, which caused the bullet to ricochet off.',
'Conan suspected Shiratori to be Kid in disguise.',
'At the end of the story, Kid appeared disguised as Shinichi and distracted Ran while Conan was about to confess to her. Kid then disappeared in a flurry of pigeons.']
}
df = pd.DataFrame(data)
# ! pip -q install transformers
from transformers import AutoModelWithLMHead, AutoTokenizer
import torch
import os
tokenizer = AutoTokenizer.from_pretrained("microsoft/DialoGPT-small")
model = AutoModelWithLMHead.from_pretrained("microsoft/DialoGPT-small")
"""
Fine-tuning the library models for language modeling on a text file (GPT, GPT-2, BERT, RoBERTa).
GPT and GPT-2 are fine-tuned using a causal language modeling (CLM) loss while BERT and RoBERTa are fine-tuned
using a masked language modeling (MLM) loss.
"""
import glob
import logging
import os
import pickle
import random
import re
import shutil
from typing import Dict, List, Tuple
import json
import pandas as pd
import numpy as np
import torch
from sklearn.model_selection import train_test_split
from torch.nn.utils.rnn import pad_sequence
from torch.utils.data import DataLoader, Dataset, RandomSampler, SequentialSampler
from torch.utils.data.distributed import DistributedSampler
from tqdm.notebook import tqdm, trange
from pathlib import Path
from transformers import (
MODEL_WITH_LM_HEAD_MAPPING,
WEIGHTS_NAME,
AdamW,
AutoConfig,
AutoModelWithLMHead,
AutoTokenizer,
PreTrainedModel,
PreTrainedTokenizer,
get_linear_schedule_with_warmup,
)
try:
from torch.utils.tensorboard import SummaryWriter
except ImportError:
from tensorboardX import SummaryWriter
# Configs
logger = logging.getLogger(__name__)
MODEL_CONFIG_CLASSES = list(MODEL_WITH_LM_HEAD_MAPPING.keys())
MODEL_TYPES = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES)
# Args to allow for easy convertion of python script to notebook
class Args():
def __init__(self):
self.output_dir = 'output-small-save'
self.model_type = 'gpt2'
self.model_name_or_path = 'microsoft/DialoGPT-small'
self.config_name = 'microsoft/DialoGPT-small'
self.tokenizer_name = 'microsoft/DialoGPT-small'
self.cache_dir = 'cached'
self.block_size = 512
self.do_train = True
self.do_eval = True
self.evaluate_during_training = False
self.per_gpu_train_batch_size = 4
self.per_gpu_eval_batch_size = 4
self.gradient_accumulation_steps = 1
self.learning_rate = 5e-5
self.weight_decay = 0.0
self.adam_epsilon = 1e-8
self.max_grad_norm = 1.0
self.num_train_epochs = 3
self.max_steps = -1
self.warmup_steps = 0
self.logging_steps = 1000
self.save_steps = 3500
self.save_total_limit = None
self.eval_all_checkpoints = False
self.no_cuda = False
self.overwrite_output_dir = True
self.overwrite_cache = True
self.should_continue = False
self.seed = 42
self.local_rank = -1
self.fp16 = False
self.fp16_opt_level = 'O1'
args = Args()
df.head()
def construct_conv(row, tokenizer, eos = True):
flatten = lambda l: [item for sublist in l for item in sublist]
conv = list(reversed([tokenizer.encode(x) + [tokenizer.eos_token_id] for x in row]))
conv = flatten(conv)
return conv
class ConversationDataset(Dataset):
def __init__(self, tokenizer: PreTrainedTokenizer, args, df, block_size=512):
block_size = block_size - (tokenizer.model_max_length - tokenizer.max_len_single_sentence)
directory = args.cache_dir
cached_features_file = os.path.join(
directory, args.model_type + "_cached_lm_" + str(block_size)
)
if os.path.exists(cached_features_file) and not args.overwrite_cache:
logger.info("Loading features from cached file %s", cached_features_file)
with open(cached_features_file, "rb") as handle:
self.examples = pickle.load(handle)
else:
logger.info("Creating features from dataset file at %s", directory)
self.examples = []
for _, row in df.iterrows():
conv = construct_conv(row, tokenizer)
self.examples.append(conv)
logger.info("Saving features into cached file %s", cached_features_file)
with open(cached_features_file, "wb") as handle:
pickle.dump(self.examples, handle, protocol=pickle.HIGHEST_PROTOCOL)
def __len__(self):
return len(self.examples)
def __getitem__(self, item):
return torch.tensor(self.examples[item], dtype=torch.long)
# Cacheing and storing of data/checkpoints
def load_and_cache_examples(args, tokenizer, df_trn, df_val, evaluate=False):
return ConversationDataset(tokenizer, args, df_val if evaluate else df_trn)
def set_seed(args):
random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
if args.n_gpu > 0:
torch.cuda.manual_seed_all(args.seed)
def _sorted_checkpoints(args, checkpoint_prefix="checkpoint", use_mtime=False) -> List[str]:
ordering_and_checkpoint_path = []
glob_checkpoints = glob.glob(os.path.join(args.output_dir, "{}-*".format(checkpoint_prefix)))
for path in glob_checkpoints:
if use_mtime:
ordering_and_checkpoint_path.append((os.path.getmtime(path), path))
else:
regex_match = re.match(".*{}-([0-9]+)".format(checkpoint_prefix), path)
if regex_match and regex_match.groups():
ordering_and_checkpoint_path.append((int(regex_match.groups()[0]), path))
checkpoints_sorted = sorted(ordering_and_checkpoint_path)
checkpoints_sorted = [checkpoint[1] for checkpoint in checkpoints_sorted]
return checkpoints_sorted
def _rotate_checkpoints(args, checkpoint_prefix="checkpoint", use_mtime=False) -> None:
if not args.save_total_limit:
return
if args.save_total_limit <= 0:
return
# Check if we should delete older checkpoint(s)
checkpoints_sorted = _sorted_checkpoints(args, checkpoint_prefix, use_mtime)
if len(checkpoints_sorted) <= args.save_total_limit:
return
number_of_checkpoints_to_delete = max(0, len(checkpoints_sorted) - args.save_total_limit)
checkpoints_to_be_deleted = checkpoints_sorted[:number_of_checkpoints_to_delete]
for checkpoint in checkpoints_to_be_deleted:
logger.info("Deleting older checkpoint [{}] due to args.save_total_limit".format(checkpoint))
shutil.rmtree(checkpoint)
def train(args, train_dataset, model: PreTrainedModel, tokenizer: PreTrainedTokenizer) -> Tuple[int, float]:
""" Train the model """
if args.local_rank in [-1, 0]:
tb_writer = SummaryWriter()
args.train_batch_size = args.per_gpu_train_batch_size * max(1, args.n_gpu)
def collate(examples: List[torch.Tensor]):
if tokenizer._pad_token is None:
return pad_sequence(examples, batch_first=True)
return pad_sequence(examples, batch_first=True, padding_value=tokenizer.pad_token_id)
train_sampler = RandomSampler(train_dataset) if args.local_rank == -1 else DistributedSampler(train_dataset)
train_dataloader = DataLoader(
train_dataset, sampler=train_sampler, batch_size=args.train_batch_size, collate_fn=collate, drop_last = True
)
if args.max_steps > 0:
t_total = args.max_steps
args.num_train_epochs = args.max_steps // (len(train_dataloader) // args.gradient_accumulation_steps) + 1
else:
t_total = len(train_dataloader) // args.gradient_accumulation_steps * args.num_train_epochs
model = model.module if hasattr(model, "module") else model # Take care of distributed/parallel training
model.resize_token_embeddings(len(tokenizer))
# add_special_tokens_(model, tokenizer)
# Prepare optimizer and schedule (linear warmup and decay)
no_decay = ["bias", "LayerNorm.weight"]
optimizer_grouped_parameters = [
{
"params": [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)],
"weight_decay": args.weight_decay,
},
{"params": [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)], "weight_decay": 0.0},
]
optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate, eps=args.adam_epsilon)
scheduler = get_linear_schedule_with_warmup(
optimizer, num_warmup_steps=args.warmup_steps, num_training_steps=t_total
)
# Check if saved optimizer or scheduler states exist
if (
args.model_name_or_path
and os.path.isfile(os.path.join(args.model_name_or_path, "optimizer.pt"))
and os.path.isfile(os.path.join(args.model_name_or_path, "scheduler.pt"))
):
# Load in optimizer and scheduler states
optimizer.load_state_dict(torch.load(os.path.join(args.model_name_or_path, "optimizer.pt")))
scheduler.load_state_dict(torch.load(os.path.join(args.model_name_or_path, "scheduler.pt")))
if args.fp16:
try:
from apex import amp
except ImportError:
raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use fp16 training.")
model, optimizer = amp.initialize(model, optimizer, opt_level=args.fp16_opt_level)
# multi-gpu training (should be after apex fp16 initialization)
if args.n_gpu > 1:
model = torch.nn.DataParallel(model)
# Distributed training (should be after apex fp16 initialization)
if args.local_rank != -1:
model = torch.nn.parallel.DistributedDataParallel(
model, device_ids=[args.local_rank], output_device=args.local_rank, find_unused_parameters=True
)
# Train!
logger.info("***** Running training *****")
logger.info(" Num examples = %d", len(train_dataset))
logger.info(" Num Epochs = %d", args.num_train_epochs)
logger.info(" Instantaneous batch size per GPU = %d", args.per_gpu_train_batch_size)
logger.info(
" Total train batch size (w. parallel, distributed & accumulation) = %d",
args.train_batch_size
* args.gradient_accumulation_steps
* (torch.distributed.get_world_size() if args.local_rank != -1 else 1),
)
logger.info(" Gradient Accumulation steps = %d", args.gradient_accumulation_steps)
logger.info(" Total optimization steps = %d", t_total)
global_step = 0
epochs_trained = 0
steps_trained_in_current_epoch = 0
# Check if continuing training from a checkpoint
if args.model_name_or_path and os.path.exists(args.model_name_or_path):
try:
# set global_step to gobal_step of last saved checkpoint from model path
checkpoint_suffix = args.model_name_or_path.split("-")[-1].split("/")[0]
global_step = int(checkpoint_suffix)
epochs_trained = global_step // (len(train_dataloader) // args.gradient_accumulation_steps)
steps_trained_in_current_epoch = global_step % (len(train_dataloader) // args.gradient_accumulation_steps)
logger.info(" Continuing training from checkpoint, will skip to saved global_step")
logger.info(" Continuing training from epoch %d", epochs_trained)
logger.info(" Continuing training from global step %d", global_step)
logger.info(" Will skip the first %d steps in the first epoch", steps_trained_in_current_epoch)
except ValueError:
logger.info(" Starting fine-tuning.")
tr_loss, logging_loss = 0.0, 0.0
model.zero_grad()
train_iterator = trange(
epochs_trained, int(args.num_train_epochs), desc="Epoch", disable=args.local_rank not in [-1, 0]
)
set_seed(args) # Added here for reproducibility
for _ in train_iterator:
epoch_iterator = tqdm(train_dataloader, desc="Iteration", disable=args.local_rank not in [-1, 0])
for step, batch in enumerate(epoch_iterator):
# Skip past any already trained steps if resuming training
if steps_trained_in_current_epoch > 0:
steps_trained_in_current_epoch -= 1
continue
inputs, labels = (batch, batch)
if inputs.shape[1] > 1024: continue
inputs = inputs.to(args.device)
labels = labels.to(args.device)
model.train()
outputs = model(inputs, labels=labels)
loss = outputs[0] # model outputs are always tuple in transformers (see doc)
if args.n_gpu > 1:
loss = loss.mean() # mean() to average on multi-gpu parallel training
if args.gradient_accumulation_steps > 1:
loss = loss / args.gradient_accumulation_steps
if args.fp16:
with amp.scale_loss(loss, optimizer) as scaled_loss:
scaled_loss.backward()
else:
loss.backward()
tr_loss += loss.item()
if (step + 1) % args.gradient_accumulation_steps == 0:
if args.fp16:
torch.nn.utils.clip_grad_norm_(amp.master_params(optimizer), args.max_grad_norm)
else:
torch.nn.utils.clip_grad_norm_(model.parameters(), args.max_grad_norm)
optimizer.step()
scheduler.step() # Update learning rate schedule
model.zero_grad()
global_step += 1
if args.local_rank in [-1, 0] and args.logging_steps > 0 and global_step % args.logging_steps == 0:
# Log metrics
if (
args.local_rank == -1 and args.evaluate_during_training
): # Only evaluate when single GPU otherwise metrics may not average well
results = evaluate(args, model, tokenizer)
for key, value in results.items():
tb_writer.add_scalar("eval_{}".format(key), value, global_step)
tb_writer.add_scalar("lr", scheduler.get_lr()[0], global_step)
tb_writer.add_scalar("loss", (tr_loss - logging_loss) / args.logging_steps, global_step)
logging_loss = tr_loss
if args.local_rank in [-1, 0] and args.save_steps > 0 and global_step % args.save_steps == 0:
checkpoint_prefix = "checkpoint"
# Save model checkpoint
output_dir = os.path.join(args.output_dir, "{}-{}".format(checkpoint_prefix, global_step))
os.makedirs(output_dir, exist_ok=True)
model_to_save = (
model.module if hasattr(model, "module") else model
) # Take care of distributed/parallel training
model_to_save.save_pretrained(output_dir)
tokenizer.save_pretrained(output_dir)
torch.save(args, os.path.join(output_dir, "training_args.bin"))
logger.info("Saving model checkpoint to %s", output_dir)
_rotate_checkpoints(args, checkpoint_prefix)
torch.save(optimizer.state_dict(), os.path.join(output_dir, "optimizer.pt"))
torch.save(scheduler.state_dict(), os.path.join(output_dir, "scheduler.pt"))
logger.info("Saving optimizer and scheduler states to %s", output_dir)
if args.max_steps > 0 and global_step > args.max_steps:
epoch_iterator.close()
break
if args.max_steps > 0 and global_step > args.max_steps:
train_iterator.close()
break
if args.local_rank in [-1, 0]:
tb_writer.close()
return global_step, tr_loss / global_step
# Evaluation of some model
def evaluate(args, model: PreTrainedModel, tokenizer: PreTrainedTokenizer, df_trn, df_val, prefix="") -> Dict:
# Loop to handle MNLI double evaluation (matched, mis-matched)
eval_output_dir = args.output_dir
eval_dataset = load_and_cache_examples(args, tokenizer, df_trn, df_val, evaluate=True)
os.makedirs(eval_output_dir, exist_ok=True)
args.eval_batch_size = args.per_gpu_eval_batch_size * max(1, args.n_gpu)
# Note that DistributedSampler samples randomly
def collate(examples: List[torch.Tensor]):
if tokenizer._pad_token is None:
return pad_sequence(examples, batch_first=True)
return pad_sequence(examples, batch_first=True, padding_value=tokenizer.pad_token_id)
eval_sampler = SequentialSampler(eval_dataset)
eval_dataloader = DataLoader(
eval_dataset, sampler=eval_sampler, batch_size=args.eval_batch_size, collate_fn=collate, drop_last = True
)
# multi-gpu evaluate
if args.n_gpu > 1:
model = torch.nn.DataParallel(model)
# Eval!
logger.info("***** Running evaluation {} *****".format(prefix))
logger.info(" Num examples = %d", len(eval_dataset))
logger.info(" Batch size = %d", args.eval_batch_size)
eval_loss = 0.0
nb_eval_steps = 0
model.eval()
for batch in tqdm(eval_dataloader, desc="Evaluating"):
inputs, labels = (batch, batch)
inputs = inputs.to(args.device)
labels = labels.to(args.device)
with torch.no_grad():
outputs = model(inputs, labels=labels)
lm_loss = outputs[0]
eval_loss += lm_loss.mean().item()
nb_eval_steps += 1
eval_loss = eval_loss / nb_eval_steps
perplexity = torch.exp(torch.tensor(eval_loss))
result = {"perplexity": perplexity}
output_eval_file = os.path.join(eval_output_dir, prefix, "eval_results.txt")
with open(output_eval_file, "w") as writer:
logger.info("***** Eval results {} *****".format(prefix))
for key in sorted(result.keys()):
logger.info(" %s = %s", key, str(result[key]))
writer.write("%s = %s\n" % (key, str(result[key])))
return result
def main(df_trn, df_val):
args = Args()
if args.should_continue:
sorted_checkpoints = _sorted_checkpoints(args)
if len(sorted_checkpoints) == 0:
raise ValueError("Used --should_continue but no checkpoint was found in --output_dir.")
else:
args.model_name_or_path = sorted_checkpoints[-1]
if (
os.path.exists(args.output_dir)
and os.listdir(args.output_dir)
and args.do_train
and not args.overwrite_output_dir
and not args.should_continue
):
raise ValueError(
"Output directory ({}) already exists and is not empty. Use --overwrite_output_dir to overcome.".format(
args.output_dir
)
)
# Setup CUDA, GPU & distributed training
device = torch.device("cuda")
args.n_gpu = torch.cuda.device_count()
args.device = device
# Setup logging
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN,
)
logger.warning(
"Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s",
args.local_rank,
device,
args.n_gpu,
bool(args.local_rank != -1),
args.fp16,
)
# Set seed
set_seed(args)
config = AutoConfig.from_pretrained(args.config_name, cache_dir=args.cache_dir)
tokenizer = AutoTokenizer.from_pretrained(args.tokenizer_name, cache_dir=args.cache_dir)
model = AutoModelWithLMHead.from_pretrained(
args.model_name_or_path,
from_tf=False,
config=config,
cache_dir=args.cache_dir,
)
model.to(args.device)
logger.info("Training/evaluation parameters %s", args)
# Training
if args.do_train:
train_dataset = load_and_cache_examples(args, tokenizer, df_trn, df_val, evaluate=False)
global_step, tr_loss = train(args, train_dataset, model, tokenizer)
logger.info(" global_step = %s, average loss = %s", global_step, tr_loss)
# Saving best-practices: if you use save_pretrained for the model and tokenizer, you can reload them using from_pretrained()
if args.do_train:
# Create output directory if needed
os.makedirs(args.output_dir, exist_ok=True)
logger.info("Saving model checkpoint to %s", args.output_dir)
# Save a trained model, configuration and tokenizer using `save_pretrained()`.
# They can then be reloaded using `from_pretrained()`
model_to_save = (
model.module if hasattr(model, "module") else model
) # Take care of distributed/parallel training
model_to_save.save_pretrained(args.output_dir)
tokenizer.save_pretrained(args.output_dir)
# Good practice: save your training arguments together with the trained model
torch.save(args, os.path.join(args.output_dir, "training_args.bin"))
# Load a trained model and vocabulary that you have fine-tuned
model = AutoModelWithLMHead.from_pretrained(args.output_dir)
tokenizer = AutoTokenizer.from_pretrained(args.output_dir)
model.to(args.device)
# Evaluation
results = {}
if args.do_eval and args.local_rank in [-1, 0]:
checkpoints = [args.output_dir]
if args.eval_all_checkpoints:
checkpoints = list(
os.path.dirname(c) for c in sorted(glob.glob(args.output_dir + "/**/" + WEIGHTS_NAME, recursive=True))
)
logging.getLogger("transformers.modeling_utils").setLevel(logging.WARN) # Reduce logging
logger.info("Evaluate the following checkpoints: %s", checkpoints)
for checkpoint in checkpoints:
global_step = checkpoint.split("-")[-1] if len(checkpoints) > 1 else ""
prefix = checkpoint.split("/")[-1] if checkpoint.find("checkpoint") != -1 else ""
model = AutoModelWithLMHead.from_pretrained(checkpoint)
model.to(args.device)
result = evaluate(args, model, tokenizer, df_trn, df_val, prefix=prefix)
result = dict((k + "_{}".format(global_step), v) for k, v in result.items())
results.update(result)
return results
df = df.rename(columns={'Answer': 'response'})
df = df.rename(columns={'Question': 'context'})
df
main(df,df)
test_chatbot = []
text = "Hello"
# for i in range(len(test_query)):
tokenizer = AutoTokenizer.from_pretrained('microsoft/DialoGPT-small')
model = AutoModelWithLMHead.from_pretrained('output-small-save')
# append the new user input tokens to the chat history
bot_input_ids = tokenizer.encode(text + tokenizer.eos_token, return_tensors='pt')
print("Patient: {} \n".format(text))
print("Reference: {} \n".format(text))
# generated a response while limiting the total chat history to 1000 tokens,
chat_history_ids = model.generate(
bot_input_ids, max_length=100,
pad_token_id=tokenizer.eos_token_id,
no_repeat_ngram_size=3,
do_sample=True,
top_k=10,
top_p=0.7,
temperature = 0.8
)
# pretty print last ouput tokens from bot
st.write("Predict: {} \n\n".format(tokenizer.decode(chat_history_ids[:, bot_input_ids.shape[-1]:][0], skip_special_tokens=True)))
test_chatbot.append(tokenizer.decode(chat_history_ids[:, bot_input_ids.shape[-1]:][0], skip_special_tokens=True))
print(len(test_chatbot))
####################################
############Streamlit###############
st.set_page_config(
page_title="COVID Doctor using DialoGPT",
page_icon=":robot:"
)
API_URL = "https://api-inference.huggingface.co/models/microsoft/DialoGPT-small"
#headers = {"Authorization": st.secrets['api_key']}
st.header("Hello - Welcome to COVID Doctor using DialoGPT")
st.markdown("[Github](https://github.com/rushic24/DialoGPT-Finetune)")
if 'generated' not in st.session_state:
st.session_state['generated'] = []
if 'past' not in st.session_state:
st.session_state['past'] = []
def query(payload):
bot_input_ids = tokenizer.encode(payload["inputs"]["text"] + tokenizer.eos_token, return_tensors='pt')
chat_history_ids = model.generate(
bot_input_ids, max_length=100,
pad_token_id=tokenizer.eos_token_id,
no_repeat_ngram_size=3,
do_sample=True,
top_k=10,
top_p=0.7,
temperature = 0.8
)
output = tokenizer.decode(chat_history_ids[:, bot_input_ids.shape[-1]:][0], skip_special_tokens=True)
return {"generated_text": output}
def get_text():
input_text = st.text_input("You: "," ", key="input")
return input_text
user_input = get_text()
if user_input:
output = query({
"inputs": {
"past_user_inputs": st.session_state.past,
"generated_responses": st.session_state.generated,
"text": user_input,
},"parameters": {"repetition_penalty": 1.33},
})
st.session_state.past.append(user_input)
st.session_state.generated.append(output["generated_text"])
if st.session_state['generated']:
for i in range(len(st.session_state['generated'])-1, -1, -1):
message(st.session_state["generated"][i], key=str(i))
message(st.session_state['past'][i], is_user=True, key=str(i) + '_user')