Spaces:
Sleeping
Sleeping
""" | |
Implementation of model from: | |
Kum et al. - "Joint Detection and Classification of Singing Voice Melody Using | |
Convolutional Recurrent Neural Networks" (2019) | |
Link: https://www.semanticscholar.org/paper/Joint-Detection-and-Classification-of-Singing-Voice-Kum-Nam/60a2ad4c7db43bace75805054603747fcd062c0d | |
""" | |
import torch | |
from torch import nn | |
class JDCNet(nn.Module): | |
""" | |
Joint Detection and Classification Network model for singing voice melody. | |
""" | |
def __init__(self, num_class=722, seq_len=31, leaky_relu_slope=0.01): | |
super().__init__() | |
self.num_class = num_class | |
# input = (b, 1, 31, 513), b = batch size | |
self.conv_block = nn.Sequential( | |
nn.Conv2d( | |
in_channels=1, out_channels=64, kernel_size=3, padding=1, bias=False | |
), # out: (b, 64, 31, 513) | |
nn.BatchNorm2d(num_features=64), | |
nn.LeakyReLU(leaky_relu_slope, inplace=True), | |
nn.Conv2d(64, 64, 3, padding=1, bias=False), # (b, 64, 31, 513) | |
) | |
# res blocks | |
self.res_block1 = ResBlock( | |
in_channels=64, out_channels=128 | |
) # (b, 128, 31, 128) | |
self.res_block2 = ResBlock( | |
in_channels=128, out_channels=192 | |
) # (b, 192, 31, 32) | |
self.res_block3 = ResBlock(in_channels=192, out_channels=256) # (b, 256, 31, 8) | |
# pool block | |
self.pool_block = nn.Sequential( | |
nn.BatchNorm2d(num_features=256), | |
nn.LeakyReLU(leaky_relu_slope, inplace=True), | |
nn.MaxPool2d(kernel_size=(1, 4)), # (b, 256, 31, 2) | |
nn.Dropout(p=0.2), | |
) | |
# maxpool layers (for auxiliary network inputs) | |
# in = (b, 128, 31, 513) from conv_block, out = (b, 128, 31, 2) | |
self.maxpool1 = nn.MaxPool2d(kernel_size=(1, 40)) | |
# in = (b, 128, 31, 128) from res_block1, out = (b, 128, 31, 2) | |
self.maxpool2 = nn.MaxPool2d(kernel_size=(1, 20)) | |
# in = (b, 128, 31, 32) from res_block2, out = (b, 128, 31, 2) | |
self.maxpool3 = nn.MaxPool2d(kernel_size=(1, 10)) | |
# in = (b, 640, 31, 2), out = (b, 256, 31, 2) | |
self.detector_conv = nn.Sequential( | |
nn.Conv2d(640, 256, 1, bias=False), | |
nn.BatchNorm2d(256), | |
nn.LeakyReLU(leaky_relu_slope, inplace=True), | |
nn.Dropout(p=0.2), | |
) | |
# input: (b, 31, 512) - resized from (b, 256, 31, 2) | |
self.bilstm_classifier = nn.LSTM( | |
input_size=512, hidden_size=256, batch_first=True, bidirectional=True | |
) # (b, 31, 512) | |
# input: (b, 31, 512) - resized from (b, 256, 31, 2) | |
self.bilstm_detector = nn.LSTM( | |
input_size=512, hidden_size=256, batch_first=True, bidirectional=True | |
) # (b, 31, 512) | |
# input: (b * 31, 512) | |
self.classifier = nn.Linear( | |
in_features=512, out_features=self.num_class | |
) # (b * 31, num_class) | |
# input: (b * 31, 512) | |
self.detector = nn.Linear( | |
in_features=512, out_features=2 | |
) # (b * 31, 2) - binary classifier | |
# initialize weights | |
self.apply(self.init_weights) | |
def get_feature_GAN(self, x): | |
seq_len = x.shape[-2] | |
x = x.float().transpose(-1, -2) | |
convblock_out = self.conv_block(x) | |
resblock1_out = self.res_block1(convblock_out) | |
resblock2_out = self.res_block2(resblock1_out) | |
resblock3_out = self.res_block3(resblock2_out) | |
poolblock_out = self.pool_block[0](resblock3_out) | |
poolblock_out = self.pool_block[1](poolblock_out) | |
return poolblock_out.transpose(-1, -2) | |
def get_feature(self, x): | |
seq_len = x.shape[-2] | |
x = x.float().transpose(-1, -2) | |
convblock_out = self.conv_block(x) | |
resblock1_out = self.res_block1(convblock_out) | |
resblock2_out = self.res_block2(resblock1_out) | |
resblock3_out = self.res_block3(resblock2_out) | |
poolblock_out = self.pool_block[0](resblock3_out) | |
poolblock_out = self.pool_block[1](poolblock_out) | |
return self.pool_block[2](poolblock_out) | |
def forward(self, x): | |
""" | |
Returns: | |
classification_prediction, detection_prediction | |
sizes: (b, 31, 722), (b, 31, 2) | |
""" | |
############################### | |
# forward pass for classifier # | |
############################### | |
seq_len = x.shape[-1] | |
x = x.float().transpose(-1, -2) | |
convblock_out = self.conv_block(x) | |
resblock1_out = self.res_block1(convblock_out) | |
resblock2_out = self.res_block2(resblock1_out) | |
resblock3_out = self.res_block3(resblock2_out) | |
poolblock_out = self.pool_block[0](resblock3_out) | |
poolblock_out = self.pool_block[1](poolblock_out) | |
GAN_feature = poolblock_out.transpose(-1, -2) | |
poolblock_out = self.pool_block[2](poolblock_out) | |
# (b, 256, 31, 2) => (b, 31, 256, 2) => (b, 31, 512) | |
classifier_out = ( | |
poolblock_out.permute(0, 2, 1, 3).contiguous().view((-1, seq_len, 512)) | |
) | |
classifier_out, _ = self.bilstm_classifier( | |
classifier_out | |
) # ignore the hidden states | |
classifier_out = classifier_out.contiguous().view((-1, 512)) # (b * 31, 512) | |
classifier_out = self.classifier(classifier_out) | |
classifier_out = classifier_out.view( | |
(-1, seq_len, self.num_class) | |
) # (b, 31, num_class) | |
# sizes: (b, 31, 722), (b, 31, 2) | |
# classifier output consists of predicted pitch classes per frame | |
# detector output consists of: (isvoice, notvoice) estimates per frame | |
return torch.abs(classifier_out.squeeze()), GAN_feature, poolblock_out | |
def init_weights(m): | |
if isinstance(m, nn.Linear): | |
nn.init.kaiming_uniform_(m.weight) | |
if m.bias is not None: | |
nn.init.constant_(m.bias, 0) | |
elif isinstance(m, nn.Conv2d): | |
nn.init.xavier_normal_(m.weight) | |
elif isinstance(m, nn.LSTM) or isinstance(m, nn.LSTMCell): | |
for p in m.parameters(): | |
if p.data is None: | |
continue | |
if len(p.shape) >= 2: | |
nn.init.orthogonal_(p.data) | |
else: | |
nn.init.normal_(p.data) | |
class ResBlock(nn.Module): | |
def __init__(self, in_channels: int, out_channels: int, leaky_relu_slope=0.01): | |
super().__init__() | |
self.downsample = in_channels != out_channels | |
# BN / LReLU / MaxPool layer before the conv layer - see Figure 1b in the paper | |
self.pre_conv = nn.Sequential( | |
nn.BatchNorm2d(num_features=in_channels), | |
nn.LeakyReLU(leaky_relu_slope, inplace=True), | |
nn.MaxPool2d(kernel_size=(1, 2)), # apply downsampling on the y axis only | |
) | |
# conv layers | |
self.conv = nn.Sequential( | |
nn.Conv2d( | |
in_channels=in_channels, | |
out_channels=out_channels, | |
kernel_size=3, | |
padding=1, | |
bias=False, | |
), | |
nn.BatchNorm2d(out_channels), | |
nn.LeakyReLU(leaky_relu_slope, inplace=True), | |
nn.Conv2d(out_channels, out_channels, 3, padding=1, bias=False), | |
) | |
# 1 x 1 convolution layer to match the feature dimensions | |
self.conv1by1 = None | |
if self.downsample: | |
self.conv1by1 = nn.Conv2d(in_channels, out_channels, 1, bias=False) | |
def forward(self, x): | |
x = self.pre_conv(x) | |
if self.downsample: | |
x = self.conv(x) + self.conv1by1(x) | |
else: | |
x = self.conv(x) + x | |
return x | |