Spaces:
Running
Running
Update app.py
Browse filesUpdate Chatbot
app.py
CHANGED
@@ -1,3 +1,4 @@
|
|
|
|
1 |
import streamlit as st
|
2 |
import cv2
|
3 |
import numpy as np
|
@@ -6,43 +7,48 @@ import os
|
|
6 |
import pandas as pd
|
7 |
from PIL import Image
|
8 |
import time
|
9 |
-
from ultralytics import YOLO
|
10 |
from paddleocr import PaddleOCR, draw_ocr
|
|
|
11 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
st.title("Nutri-Grade Label Detection & Grade Calculator")
|
|
|
13 |
|
14 |
# -----------------------------------------------
|
15 |
# Info & Petunjuk Penggunaan
|
16 |
# -----------------------------------------------
|
17 |
-
with st.expander("
|
18 |
st.markdown("""
|
19 |
-
**Deskripsi Aplikasi:**
|
20 |
-
|
21 |
-
Aplikasi ini membantu Anda mendeteksi dan mengekstrak informasi tabel gizi dari gambar label nutrisi, melakukan normalisasi nilai nutrisi per 100 g/ml, dan menghitung Nutri-Grade sesuai dengan standar resmi (Rev. Juni 2023).
|
22 |
-
|
23 |
-
**Fitur Utama:**
|
24 |
-
- Deteksi objek label nutrisi dengan YOLO.
|
25 |
-
- Ekstraksi teks dengan PaddleOCR, mendukung format "key: value".
|
26 |
-
- Normalisasi nilai nutrisi (Gula dan Lemak Jenuh) per 100 g/ml.
|
27 |
-
- Perhitungan grade berdasarkan threshold:
|
28 |
-
• Gula: Grade A ≤ 1g, B: >1-5g, C: >5-10g, D: >10g per 100 ml.
|
29 |
-
• Lemak Jenuh: Grade A ≤ 0.7g, B: >0.7-1.2g, C: >1.2-2.8g, D: >2.8g per 100 ml.
|
30 |
-
• **Grade akhir diambil dari nilai terburuk antara gula dan lemak jenuh.**
|
31 |
-
|
32 |
**Cara Penggunaan:**
|
33 |
1. Upload gambar label nutrisi (JPG/PNG).
|
34 |
-
2. Sistem mendeteksi
|
35 |
3. Periksa dan koreksi nilai secara manual jika diperlukan.
|
36 |
-
4. Klik *Hitung* untuk melihat tabel normalisasi dan
|
37 |
""")
|
38 |
-
|
39 |
with st.expander("!! Tolong Diperhatikan !!"):
|
40 |
st.markdown("""
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
""")
|
47 |
|
48 |
# Fungsi untuk membersihkan nilai numerik (contoh: "15g" → 15.0)
|
@@ -53,10 +59,8 @@ def parse_numeric_value(text):
|
|
53 |
except ValueError:
|
54 |
return 0.0
|
55 |
|
56 |
-
# Inisialisasi model
|
57 |
-
|
58 |
-
yolo_model = YOLO(trained_model_path)
|
59 |
-
ocr_model = PaddleOCR(use_gpu=True, lang='en', cls=True)
|
60 |
|
61 |
# --- STEP 1: Upload Gambar ---
|
62 |
uploaded_file = st.file_uploader("Upload Gambar (JPG/PNG)", type=["jpg", "jpeg", "png"])
|
@@ -67,24 +71,8 @@ if uploaded_file is not None:
|
|
67 |
img_path = "uploaded_image.jpg"
|
68 |
cv2.imwrite(img_path, img)
|
69 |
|
70 |
-
# --- STEP 2:
|
71 |
-
st.write("Melakukan
|
72 |
-
yolo_results = yolo_model.predict(source=img_path, conf=0.5)
|
73 |
-
crop_images = []
|
74 |
-
boxes = yolo_results[0].boxes
|
75 |
-
for i, box in enumerate(boxes):
|
76 |
-
x1, y1, x2, y2 = box.xyxy[0].cpu().numpy().astype(int)
|
77 |
-
cropped = img[y1:y2, x1:x2]
|
78 |
-
crop_filename = f"crop_{i}.jpg"
|
79 |
-
cv2.imwrite(crop_filename, cropped)
|
80 |
-
crop_images.append((crop_filename, cropped))
|
81 |
-
st.success("Proses crop bounding box selesai!")
|
82 |
-
st.write("Jumlah crop yang ditemukan:", len(crop_images))
|
83 |
-
for crop_filename, cropped in crop_images:
|
84 |
-
st.image(cv2.cvtColor(cropped, cv2.COLOR_BGR2RGB), caption=f"Crop: {crop_filename}", use_column_width=True)
|
85 |
-
|
86 |
-
# --- STEP 3: OCR pada Gambar Penuh ---
|
87 |
-
st.write("Melakukan OCR pada gambar penuh dengan PaddleOCR...")
|
88 |
start_time = time.time()
|
89 |
ocr_result = ocr_model.ocr(img_path, cls=True)
|
90 |
ocr_time = time.time() - start_time
|
@@ -112,18 +100,16 @@ if uploaded_file is not None:
|
|
112 |
"center_y": center_y,
|
113 |
"height": max(ys) - min(ys)
|
114 |
})
|
115 |
-
# Urutkan berdasarkan posisi vertikal
|
116 |
ocr_list = sorted(ocr_list, key=lambda x: x["center_y"])
|
117 |
|
118 |
# Ekstrak pasangan key-value dengan format "key: value"
|
119 |
-
# Hanya ekstrak gula, takaran saji, dan lemak jenuh
|
120 |
target_keys = {
|
121 |
"gula": ["gula"],
|
122 |
"takaran saji": ["takaran saji", "serving size"],
|
123 |
"lemak jenuh": ["lemak jenuh"]
|
124 |
}
|
125 |
extracted = {}
|
126 |
-
# Pass 1: Ekstraksi
|
127 |
for item in ocr_list:
|
128 |
txt_lower = item["text"].lower()
|
129 |
if ":" in txt_lower:
|
@@ -131,12 +117,13 @@ if uploaded_file is not None:
|
|
131 |
key_candidate = parts[0].strip()
|
132 |
value_candidate = parts[-1].strip()
|
133 |
for canonical, variants in target_keys.items():
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
|
|
140 |
# Pass 2: Fallback untuk key yang belum diekstrak
|
141 |
for item in ocr_list:
|
142 |
txt_lower = item["text"].lower()
|
@@ -178,90 +165,153 @@ if uploaded_file is not None:
|
|
178 |
im_show = Image.fromarray(im_show)
|
179 |
st.image(im_show, caption="Hasil OCR dengan Bounding Boxes", use_column_width=True)
|
180 |
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
|
198 |
-
|
199 |
-
|
200 |
-
fat_value = parse_numeric_value(corrected_data.get("Lemak jenuh", "0"))
|
201 |
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
-
|
216 |
|
217 |
-
|
218 |
-
|
219 |
-
|
220 |
-
|
221 |
-
|
222 |
-
|
223 |
-
|
224 |
-
|
225 |
-
|
226 |
-
|
227 |
|
228 |
-
|
229 |
-
|
230 |
-
thresholds_fat = {"A": 0.7, "B": 1.2, "C": 2.8}
|
231 |
|
232 |
-
|
233 |
-
|
234 |
|
235 |
-
|
236 |
-
|
237 |
-
|
238 |
-
|
239 |
-
final_grade = inverse_scores[worst_score]
|
240 |
|
241 |
-
|
242 |
-
|
243 |
-
|
244 |
|
245 |
-
|
246 |
-
|
247 |
-
|
248 |
-
|
249 |
-
|
250 |
-
|
251 |
-
|
252 |
-
|
253 |
-
|
254 |
-
|
255 |
-
|
256 |
-
|
257 |
-
|
258 |
-
|
259 |
-
|
260 |
-
|
261 |
-
|
262 |
-
|
263 |
-
|
264 |
-
|
265 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
266 |
"""
|
267 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
%%writefile app.py
|
2 |
import streamlit as st
|
3 |
import cv2
|
4 |
import numpy as np
|
|
|
7 |
import pandas as pd
|
8 |
from PIL import Image
|
9 |
import time
|
|
|
10 |
from paddleocr import PaddleOCR, draw_ocr
|
11 |
+
from openai import OpenAI
|
12 |
|
13 |
+
# # --- Set Background Wallpaper ---
|
14 |
+
# st.markdown(
|
15 |
+
# """
|
16 |
+
# <style>
|
17 |
+
# .stApp {
|
18 |
+
# background: url("/content/wallpaper.jpg");
|
19 |
+
# background-size: cover;
|
20 |
+
# background-attachment: fixed;
|
21 |
+
# background-position: center;
|
22 |
+
# filter: brightness(0.75);
|
23 |
+
# }
|
24 |
+
# </style>
|
25 |
+
# """,
|
26 |
+
# unsafe_allow_html=True
|
27 |
+
# )
|
28 |
+
|
29 |
+
# Title dan Deskripsi
|
30 |
st.title("Nutri-Grade Label Detection & Grade Calculator")
|
31 |
+
st.caption("Selamat Datang di aplikasi prototype kami. Terinspirasi dari NutriGrade Singapura, kami berharap aplikasi ini dapat membantu teman-teman dalam memilih produk makanan yang lebih sehat.")
|
32 |
|
33 |
# -----------------------------------------------
|
34 |
# Info & Petunjuk Penggunaan
|
35 |
# -----------------------------------------------
|
36 |
+
with st.expander("Petunjuk Penggunaan"):
|
37 |
st.markdown("""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
38 |
**Cara Penggunaan:**
|
39 |
1. Upload gambar label nutrisi (JPG/PNG).
|
40 |
+
2. Sistem mendeteksi teks pada gambar menggunakan OCR.
|
41 |
3. Periksa dan koreksi nilai secara manual jika diperlukan.
|
42 |
+
4. Klik *Hitung* untuk melihat tabel normalisasi, grade, dan saran nutrisi.
|
43 |
""")
|
44 |
+
|
45 |
with st.expander("!! Tolong Diperhatikan !!"):
|
46 |
st.markdown("""
|
47 |
+
1. Aplikasi ini masih dalam Pengembangan.
|
48 |
+
2. Hasil ekstraksi hanya sebagai gambaran; silakan koreksi bila diperlukan.
|
49 |
+
3. Hosting gratisan, jadi mungkin ada beberapa kendala.
|
50 |
+
4. Kode dapat diakses di Hugging Face untuk kontribusi atau feedback.
|
51 |
+
5. Referensi kami dari [Health Promotion Board Singapura](https://www.hpb.gov.sg/docs/default-source/pdf/nutri-grade-ci-guide_eng-only67e4e36349ad4274bfdb22236872336d.pdf)
|
52 |
""")
|
53 |
|
54 |
# Fungsi untuk membersihkan nilai numerik (contoh: "15g" → 15.0)
|
|
|
59 |
except ValueError:
|
60 |
return 0.0
|
61 |
|
62 |
+
# Inisialisasi model PaddleOCR
|
63 |
+
ocr_model = PaddleOCR(use_gpu=True, lang='id', cls=True)
|
|
|
|
|
64 |
|
65 |
# --- STEP 1: Upload Gambar ---
|
66 |
uploaded_file = st.file_uploader("Upload Gambar (JPG/PNG)", type=["jpg", "jpeg", "png"])
|
|
|
71 |
img_path = "uploaded_image.jpg"
|
72 |
cv2.imwrite(img_path, img)
|
73 |
|
74 |
+
# --- STEP 2: OCR pada Gambar Penuh ---
|
75 |
+
st.write("Melakukan OCR pada gambar...")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
76 |
start_time = time.time()
|
77 |
ocr_result = ocr_model.ocr(img_path, cls=True)
|
78 |
ocr_time = time.time() - start_time
|
|
|
100 |
"center_y": center_y,
|
101 |
"height": max(ys) - min(ys)
|
102 |
})
|
|
|
103 |
ocr_list = sorted(ocr_list, key=lambda x: x["center_y"])
|
104 |
|
105 |
# Ekstrak pasangan key-value dengan format "key: value"
|
|
|
106 |
target_keys = {
|
107 |
"gula": ["gula"],
|
108 |
"takaran saji": ["takaran saji", "serving size"],
|
109 |
"lemak jenuh": ["lemak jenuh"]
|
110 |
}
|
111 |
extracted = {}
|
112 |
+
# Pass 1: Ekstraksi dengan tanda titik dua
|
113 |
for item in ocr_list:
|
114 |
txt_lower = item["text"].lower()
|
115 |
if ":" in txt_lower:
|
|
|
117 |
key_candidate = parts[0].strip()
|
118 |
value_candidate = parts[-1].strip()
|
119 |
for canonical, variants in target_keys.items():
|
120 |
+
if canonical not in extracted:
|
121 |
+
for variant in variants:
|
122 |
+
if variant in key_candidate:
|
123 |
+
clean_value = re.sub(r"[^\d\.\-]", "", value_candidate)
|
124 |
+
if clean_value and clean_value != ".":
|
125 |
+
extracted[canonical.capitalize()] = clean_value
|
126 |
+
break
|
127 |
# Pass 2: Fallback untuk key yang belum diekstrak
|
128 |
for item in ocr_list:
|
129 |
txt_lower = item["text"].lower()
|
|
|
165 |
im_show = Image.fromarray(im_show)
|
166 |
st.image(im_show, caption="Hasil OCR dengan Bounding Boxes", use_column_width=True)
|
167 |
|
168 |
+
# --- Koreksi Manual dengan st.form ---
|
169 |
+
with st.form("correction_form"):
|
170 |
+
st.write("Silakan koreksi nilai jika diperlukan (hanya angka, tanpa satuan):")
|
171 |
+
corrected_data = {}
|
172 |
+
for key in target_keys.keys():
|
173 |
+
key_cap = key.capitalize()
|
174 |
+
current_val = str(parse_numeric_value(extracted.get(key_cap, ""))) if key_cap in extracted else ""
|
175 |
+
new_val = st.text_input(f"{key_cap}", value=current_val)
|
176 |
+
corrected_data[key_cap] = new_val
|
177 |
+
submit_button = st.form_submit_button("Hitung")
|
178 |
|
179 |
+
if submit_button:
|
180 |
+
try:
|
181 |
+
serving_size = parse_numeric_value(corrected_data.get("Takaran saji", "100"))
|
182 |
+
except:
|
183 |
+
serving_size = 0.0
|
184 |
|
185 |
+
sugar_value = parse_numeric_value(corrected_data.get("Gula", "0"))
|
186 |
+
fat_value = parse_numeric_value(corrected_data.get("Lemak jenuh", "0"))
|
|
|
187 |
|
188 |
+
if serving_size > 0:
|
189 |
+
sugar_norm = (sugar_value / serving_size) * 100
|
190 |
+
fat_norm = (fat_value / serving_size) * 100
|
191 |
+
else:
|
192 |
+
st.error("Takaran saji tidak valid untuk normalisasi.")
|
193 |
+
sugar_norm, fat_norm = sugar_value, fat_value
|
194 |
|
195 |
+
st.write("**Tabel Hasil Normalisasi per 100 g/ml**")
|
196 |
+
data_tabel = {
|
197 |
+
"Nutrisi": ["Gula", "Lemak jenuh"],
|
198 |
+
"Nilai (per 100 g/ml)": [sugar_norm, fat_norm]
|
199 |
+
}
|
200 |
+
df_tabel = pd.DataFrame(data_tabel)
|
201 |
+
st.table(df_tabel)
|
202 |
|
203 |
+
# Hitung Grade
|
204 |
+
def grade_from_value(value, thresholds):
|
205 |
+
if value <= thresholds["A"]:
|
206 |
+
return "Grade A"
|
207 |
+
elif value <= thresholds["B"]:
|
208 |
+
return "Grade B"
|
209 |
+
elif value <= thresholds["C"]:
|
210 |
+
return "Grade C"
|
211 |
+
else:
|
212 |
+
return "Grade D"
|
213 |
|
214 |
+
thresholds_sugar = {"A": 1.0, "B": 5.0, "C": 10.0}
|
215 |
+
thresholds_fat = {"A": 0.7, "B": 1.2, "C": 2.8}
|
|
|
216 |
|
217 |
+
sugar_grade = grade_from_value(sugar_norm, thresholds_sugar)
|
218 |
+
fat_grade = grade_from_value(fat_norm, thresholds_fat)
|
219 |
|
220 |
+
grade_scores = {"Grade A": 1, "Grade B": 2, "Grade C": 3, "Grade D": 4}
|
221 |
+
worst_score = max(grade_scores[sugar_grade], grade_scores[fat_grade])
|
222 |
+
inverse_scores = {v: k for k, v in grade_scores.items()}
|
223 |
+
final_grade = inverse_scores[worst_score]
|
|
|
224 |
|
225 |
+
st.write(f"**Grade Gula:** {sugar_grade}")
|
226 |
+
st.write(f"**Grade Lemak Jenuh:** {fat_grade}")
|
227 |
+
st.write(f"**Grade Akhir:** {final_grade}")
|
228 |
|
229 |
+
def color_grade(grade_text):
|
230 |
+
if grade_text == "Grade A":
|
231 |
+
bg_color = "#2ecc71"
|
232 |
+
elif grade_text == "Grade B":
|
233 |
+
bg_color = "#f1c40f"
|
234 |
+
elif grade_text == "Grade C":
|
235 |
+
bg_color = "#e67e22"
|
236 |
+
else:
|
237 |
+
bg_color = "#e74c3c"
|
238 |
+
return f"""
|
239 |
+
<div style="
|
240 |
+
background-color: {bg_color};
|
241 |
+
padding: 10px;
|
242 |
+
border-radius: 5px;
|
243 |
+
margin-top: 10px;
|
244 |
+
font-weight: bold;
|
245 |
+
color: white;
|
246 |
+
text-align: center;
|
247 |
+
">
|
248 |
+
{grade_text}
|
249 |
+
</div>
|
250 |
+
"""
|
251 |
+
st.markdown(color_grade(final_grade), unsafe_allow_html=True)
|
252 |
+
|
253 |
+
# --- Integrasi Qwen Satu Kali untuk Saran Nutrisi ---
|
254 |
+
# --- Integrasi Qwen Satu Kali untuk Saran Nutrisi ---
|
255 |
+
nutrition_prompt = f"""
|
256 |
+
Anda adalah ahli gizi yang ramah, komunikatif, dan berpengalaman.
|
257 |
+
Data nutrisi:
|
258 |
+
- Takaran saji: {serving_size} g/ml
|
259 |
+
- Kandungan Gula (per 100 g/ml): {sugar_norm} g
|
260 |
+
- Kandungan Lemak Jenuh (per 100 g/ml): {fat_norm} g
|
261 |
+
- Grade Gula: {sugar_grade}
|
262 |
+
- Grade Lemak Jenuh: {fat_grade}
|
263 |
+
- Grade Akhir: {final_grade}
|
264 |
+
Berdasarkan data tersebut, berikan saran nutrisi yang informatif dalam satu paragraf pendek (50-100 kata).
|
265 |
+
Jelaskan secara ringkas dengan mengulang data nutrisi lalu dampak kesehatan dari nilai-nilai tersebut dan berikan tips praktis untuk menjaga pola makan seimbang dengan bahasa yang bersahabat.
|
266 |
"""
|
267 |
+
print("\n")
|
268 |
+
st.write("Tunggu sebentar, Qwen si AI nutritionist sedang memproses penjelasannya... 🤖")
|
269 |
+
client = OpenAI(
|
270 |
+
base_url="https://openrouter.ai/api/v1",
|
271 |
+
api_key="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"
|
272 |
+
)
|
273 |
+
try:
|
274 |
+
completion = client.chat.completions.create(
|
275 |
+
extra_headers={
|
276 |
+
"HTTP-Referer": "<YOUR_SITE_URL>",
|
277 |
+
"X-Title": "<YOUR_SITE_NAME>"
|
278 |
+
},
|
279 |
+
extra_body={},
|
280 |
+
model="qwen/qwen2.5-vl-72b-instruct:free",
|
281 |
+
messages=[
|
282 |
+
{
|
283 |
+
"role": "user",
|
284 |
+
"content": [
|
285 |
+
{
|
286 |
+
"type": "text",
|
287 |
+
"text": nutrition_prompt
|
288 |
+
}
|
289 |
+
]
|
290 |
+
}
|
291 |
+
]
|
292 |
+
)
|
293 |
+
nutrition_advice = completion.choices[0].message.content
|
294 |
+
st.write("**Saran Nutrisi dari Qwen:**")
|
295 |
+
st.write(nutrition_advice)
|
296 |
+
except Exception as e:
|
297 |
+
st.error(f"Gagal mendapatkan saran dari Qwen: {e}")
|
298 |
+
|
299 |
+
# --- Tampilan Tim Pengembang ---
|
300 |
+
st.markdown("""
|
301 |
+
<div style="border: 2px solid #007BFF; padding: 10px; border-radius: 8px; margin-top: 20px;">
|
302 |
+
<h4>Tim Pengembang</h4>
|
303 |
+
<p><strong>Nicholas Dominic</strong>, Mentor - <a href="https://www.linkedin.com/in/nicholas-dominic">LinkedIn</a></p>
|
304 |
+
<p><strong>Tata Aditya Pamungkas</strong>, Machine Learning - <a href="https://www.linkedin.com/in/tata-aditya-pamungkas">LinkedIn</a></p>
|
305 |
+
<p><strong>Firzah Marhamah</strong>, Web Dev - <a href="https://www.linkedin.com/in/m-raihan-hafiz-91a368186">LinkedIn</a></p>
|
306 |
+
</div> <br>
|
307 |
+
""", unsafe_allow_html=True)
|
308 |
+
|
309 |
+
print("\n")
|
310 |
+
|
311 |
+
with st.expander("Ide inovasi kami kedepannya untuk pengembangan"):
|
312 |
+
st.markdown("""
|
313 |
+
1. Memakai server berbayar agar lebih banyak pengguna yang bisa mengakses.
|
314 |
+
2. Recall asupan berdasarkan makanan real food sehari-hari. Kami sudah berkonsultasi dengan kak Firzah Marhamah [nutritionist](https://www.linkedin.com/in/firza-marhamah)
|
315 |
+
dan ini akan sangat membantu masyarakat untuk mengetahui asupan gizi seimbang.
|
316 |
+
3. Penghitung kalori harian yang terpersonalisasi.
|
317 |
+
""")
|