Spaces:
Runtime error
Runtime error
YoungMeezz
commited on
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,987 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# --------------------------------------------------------
|
2 |
+
# PersonalizeSAM -- Personalize Segment Anything Model with One Shot
|
3 |
+
# Licensed under The MIT License [see LICENSE for details]
|
4 |
+
# --------------------------------------------------------
|
5 |
+
from PIL import Image
|
6 |
+
import torch
|
7 |
+
import torch.nn as nn
|
8 |
+
import gradio as gr
|
9 |
+
import numpy as np
|
10 |
+
from torch.nn import functional as F
|
11 |
+
|
12 |
+
from show import *
|
13 |
+
from per_segment_anything import sam_model_registry, SamPredictor
|
14 |
+
|
15 |
+
|
16 |
+
import torch
|
17 |
+
import numpy as np
|
18 |
+
import matplotlib.pyplot as plt
|
19 |
+
from sklearn.metrics import precision_score, recall_score
|
20 |
+
import torch.nn.functional as F
|
21 |
+
|
22 |
+
import cv2
|
23 |
+
import numpy as np
|
24 |
+
from PIL import Image, ImageDraw
|
25 |
+
|
26 |
+
|
27 |
+
from PIL import ImageDraw, ImageFont
|
28 |
+
|
29 |
+
class ImageMask(gr.components.Image):
|
30 |
+
"""
|
31 |
+
Sets: source="canvas", tool="sketch"
|
32 |
+
"""
|
33 |
+
|
34 |
+
is_template = True
|
35 |
+
|
36 |
+
def __init__(self, **kwargs):
|
37 |
+
super().__init__(source="upload", tool="sketch", interactive=True, **kwargs)
|
38 |
+
|
39 |
+
def preprocess(self, x):
|
40 |
+
return super().preprocess(x)
|
41 |
+
|
42 |
+
|
43 |
+
class Mask_Weights(nn.Module):
|
44 |
+
def __init__(self):
|
45 |
+
super().__init__()
|
46 |
+
self.weights = nn.Parameter(torch.ones(2, 1, requires_grad=True) / 3)
|
47 |
+
|
48 |
+
|
49 |
+
def point_selection(mask_sim, topk=1):
|
50 |
+
# Top-1 point selection
|
51 |
+
w, h = mask_sim.shape
|
52 |
+
topk_xy = mask_sim.flatten(0).topk(topk)[1]
|
53 |
+
topk_x = (topk_xy // h).unsqueeze(0)
|
54 |
+
topk_y = (topk_xy - topk_x * h)
|
55 |
+
topk_xy = torch.cat((topk_y, topk_x), dim=0).permute(1, 0)
|
56 |
+
topk_label = np.array([1] * topk)
|
57 |
+
topk_xy = topk_xy.cpu().numpy()
|
58 |
+
|
59 |
+
# Top-last point selection
|
60 |
+
last_xy = mask_sim.flatten(0).topk(topk, largest=False)[1]
|
61 |
+
last_x = (last_xy // h).unsqueeze(0)
|
62 |
+
last_y = (last_xy - last_x * h)
|
63 |
+
last_xy = torch.cat((last_y, last_x), dim=0).permute(1, 0)
|
64 |
+
last_label = np.array([0] * topk)
|
65 |
+
last_xy = last_xy.cpu().numpy()
|
66 |
+
|
67 |
+
return topk_xy, topk_label, last_xy, last_label
|
68 |
+
|
69 |
+
|
70 |
+
def calculate_dice_loss(inputs, targets, num_masks = 1):
|
71 |
+
"""
|
72 |
+
Compute the DICE loss, similar to generalized IOU for masks
|
73 |
+
Args:
|
74 |
+
inputs: A float tensor of arbitrary shape.
|
75 |
+
The predictions for each example.
|
76 |
+
targets: A float tensor with the same shape as inputs. Stores the binary
|
77 |
+
classification label for each element in inputs
|
78 |
+
(0 for the negative class and 1 for the positive class).
|
79 |
+
"""
|
80 |
+
inputs = inputs.sigmoid()
|
81 |
+
inputs = inputs.flatten(1)
|
82 |
+
numerator = 2 * (inputs * targets).sum(-1)
|
83 |
+
denominator = inputs.sum(-1) + targets.sum(-1)
|
84 |
+
loss = 1 - (numerator + 1) / (denominator + 1)
|
85 |
+
return loss.sum() / num_masks
|
86 |
+
|
87 |
+
|
88 |
+
def calculate_sigmoid_focal_loss(inputs, targets, num_masks = 1, alpha: float = 0.25, gamma: float = 2):
|
89 |
+
"""
|
90 |
+
Loss used in RetinaNet for dense detection: https://arxiv.org/abs/1708.02002.
|
91 |
+
Args:
|
92 |
+
inputs: A float tensor of arbitrary shape.
|
93 |
+
The predictions for each example.
|
94 |
+
targets: A float tensor with the same shape as inputs. Stores the binary
|
95 |
+
classification label for each element in inputs
|
96 |
+
(0 for the negative class and 1 for the positive class).
|
97 |
+
alpha: (optional) Weighting factor in range (0,1) to balance
|
98 |
+
positive vs negative examples. Default = -1 (no weighting).
|
99 |
+
gamma: Exponent of the modulating factor (1 - p_t) to
|
100 |
+
balance easy vs hard examples.
|
101 |
+
Returns:
|
102 |
+
Loss tensor
|
103 |
+
"""
|
104 |
+
prob = inputs.sigmoid()
|
105 |
+
ce_loss = F.binary_cross_entropy_with_logits(inputs, targets, reduction="none")
|
106 |
+
p_t = prob * targets + (1 - prob) * (1 - targets)
|
107 |
+
loss = ce_loss * ((1 - p_t) ** gamma)
|
108 |
+
|
109 |
+
if alpha >= 0:
|
110 |
+
alpha_t = alpha * targets + (1 - alpha) * (1 - targets)
|
111 |
+
loss = alpha_t * loss
|
112 |
+
|
113 |
+
return loss.mean(1).sum() / num_masks
|
114 |
+
|
115 |
+
|
116 |
+
def inference(ic_image, ic_mask, image1, image2):
|
117 |
+
# in context image and mask
|
118 |
+
ic_image = np.array(ic_image.convert("RGB"))
|
119 |
+
ic_mask = np.array(ic_mask.convert("RGB"))
|
120 |
+
|
121 |
+
sam_type, sam_ckpt = 'vit_h', 'sam_vit_h_4b8939.pth'
|
122 |
+
sam = sam_model_registry[sam_type](checkpoint=sam_ckpt).to('cpu')
|
123 |
+
# sam = sam_model_registry[sam_type](checkpoint=sam_ckpt)
|
124 |
+
predictor = SamPredictor(sam)
|
125 |
+
|
126 |
+
# Image features encoding
|
127 |
+
ref_mask = predictor.set_image(ic_image, ic_mask)
|
128 |
+
ref_feat = predictor.features.squeeze().permute(1, 2, 0)
|
129 |
+
|
130 |
+
ref_mask = F.interpolate(ref_mask, size=ref_feat.shape[0: 2], mode="bilinear")
|
131 |
+
ref_mask = ref_mask.squeeze()[0]
|
132 |
+
|
133 |
+
# Target feature extraction
|
134 |
+
print("======> Obtain Location Prior" )
|
135 |
+
target_feat = ref_feat[ref_mask > 0]
|
136 |
+
target_embedding = target_feat.mean(0).unsqueeze(0)
|
137 |
+
target_feat = target_embedding / target_embedding.norm(dim=-1, keepdim=True)
|
138 |
+
target_embedding = target_embedding.unsqueeze(0)
|
139 |
+
|
140 |
+
output_image = []
|
141 |
+
|
142 |
+
for test_image in [image1, image2]:
|
143 |
+
print("======> Testing Image" )
|
144 |
+
test_image = np.array(test_image.convert("RGB"))
|
145 |
+
|
146 |
+
# Image feature encoding
|
147 |
+
predictor.set_image(test_image)
|
148 |
+
test_feat = predictor.features.squeeze()
|
149 |
+
|
150 |
+
# Cosine similarity
|
151 |
+
C, h, w = test_feat.shape
|
152 |
+
test_feat = test_feat / test_feat.norm(dim=0, keepdim=True)
|
153 |
+
test_feat = test_feat.reshape(C, h * w)
|
154 |
+
sim = target_feat @ test_feat
|
155 |
+
|
156 |
+
sim = sim.reshape(1, 1, h, w)
|
157 |
+
sim = F.interpolate(sim, scale_factor=4, mode="bilinear")
|
158 |
+
sim = predictor.model.postprocess_masks(
|
159 |
+
sim,
|
160 |
+
input_size=predictor.input_size,
|
161 |
+
original_size=predictor.original_size).squeeze()
|
162 |
+
|
163 |
+
# Positive-negative location prior
|
164 |
+
topk_xy_i, topk_label_i, last_xy_i, last_label_i = point_selection(sim, topk=1)
|
165 |
+
topk_xy = np.concatenate([topk_xy_i, last_xy_i], axis=0)
|
166 |
+
topk_label = np.concatenate([topk_label_i, last_label_i], axis=0)
|
167 |
+
|
168 |
+
# Obtain the target guidance for cross-attention layers
|
169 |
+
sim = (sim - sim.mean()) / torch.std(sim)
|
170 |
+
sim = F.interpolate(sim.unsqueeze(0).unsqueeze(0), size=(64, 64), mode="bilinear")
|
171 |
+
attn_sim = sim.sigmoid_().unsqueeze(0).flatten(3)
|
172 |
+
|
173 |
+
# First-step prediction
|
174 |
+
masks, scores, logits, _ = predictor.predict(
|
175 |
+
point_coords=topk_xy,
|
176 |
+
point_labels=topk_label,
|
177 |
+
multimask_output=False,
|
178 |
+
attn_sim=attn_sim, # Target-guided Attention
|
179 |
+
target_embedding=target_embedding # Target-semantic Prompting
|
180 |
+
)
|
181 |
+
best_idx = 0
|
182 |
+
|
183 |
+
# Cascaded Post-refinement-1
|
184 |
+
masks, scores, logits, _ = predictor.predict(
|
185 |
+
point_coords=topk_xy,
|
186 |
+
point_labels=topk_label,
|
187 |
+
mask_input=logits[best_idx: best_idx + 1, :, :],
|
188 |
+
multimask_output=True)
|
189 |
+
best_idx = np.argmax(scores)
|
190 |
+
|
191 |
+
# Cascaded Post-refinement-2
|
192 |
+
y, x = np.nonzero(masks[best_idx])
|
193 |
+
x_min = x.min()
|
194 |
+
x_max = x.max()
|
195 |
+
y_min = y.min()
|
196 |
+
y_max = y.max()
|
197 |
+
input_box = np.array([x_min, y_min, x_max, y_max])
|
198 |
+
masks, scores, logits, _ = predictor.predict(
|
199 |
+
point_coords=topk_xy,
|
200 |
+
point_labels=topk_label,
|
201 |
+
box=input_box[None, :],
|
202 |
+
mask_input=logits[best_idx: best_idx + 1, :, :],
|
203 |
+
multimask_output=True)
|
204 |
+
best_idx = np.argmax(scores)
|
205 |
+
|
206 |
+
final_mask = masks[best_idx]
|
207 |
+
|
208 |
+
|
209 |
+
|
210 |
+
|
211 |
+
|
212 |
+
mask_colors = np.zeros((final_mask.shape[0], final_mask.shape[1], 3), dtype=np.uint8)
|
213 |
+
mask_colors[final_mask, :] = np.array([[128, 0, 0]])
|
214 |
+
output_image.append(Image.fromarray((mask_colors * 0.6 + test_image * 0.4).astype('uint8'), 'RGB'))
|
215 |
+
|
216 |
+
return output_image[0].resize((224, 224)), output_image[1].resize((224, 224))
|
217 |
+
|
218 |
+
|
219 |
+
def inference_scribble(image, image1, image2):
|
220 |
+
# in context image and mask
|
221 |
+
ic_image = image["image"]
|
222 |
+
ic_mask = image["mask"]
|
223 |
+
ic_image = np.array(ic_image.convert("RGB"))
|
224 |
+
ic_mask = np.array(ic_mask.convert("RGB"))
|
225 |
+
|
226 |
+
sam_type, sam_ckpt = 'vit_h', 'sam_vit_h_4b8939.pth'
|
227 |
+
sam = sam_model_registry[sam_type](checkpoint=sam_ckpt).to('cpu')
|
228 |
+
# sam = sam_model_registry[sam_type](checkpoint=sam_ckpt)
|
229 |
+
predictor = SamPredictor(sam)
|
230 |
+
|
231 |
+
# Image features encoding
|
232 |
+
ref_mask = predictor.set_image(ic_image, ic_mask)
|
233 |
+
ref_feat = predictor.features.squeeze().permute(1, 2, 0)
|
234 |
+
|
235 |
+
ref_mask = F.interpolate(ref_mask, size=ref_feat.shape[0: 2], mode="bilinear")
|
236 |
+
ref_mask = ref_mask.squeeze()[0]
|
237 |
+
|
238 |
+
# Target feature extraction
|
239 |
+
print("======> Obtain Location Prior" )
|
240 |
+
target_feat = ref_feat[ref_mask > 0]
|
241 |
+
target_embedding = target_feat.mean(0).unsqueeze(0)
|
242 |
+
target_feat = target_embedding / target_embedding.norm(dim=-1, keepdim=True)
|
243 |
+
target_embedding = target_embedding.unsqueeze(0)
|
244 |
+
|
245 |
+
output_image = []
|
246 |
+
|
247 |
+
for test_image in [image1, image2]:
|
248 |
+
print("======> Testing Image" )
|
249 |
+
test_image = np.array(test_image.convert("RGB"))
|
250 |
+
|
251 |
+
# Image feature encoding
|
252 |
+
predictor.set_image(test_image)
|
253 |
+
test_feat = predictor.features.squeeze()
|
254 |
+
|
255 |
+
# Cosine similarity
|
256 |
+
C, h, w = test_feat.shape
|
257 |
+
test_feat = test_feat / test_feat.norm(dim=0, keepdim=True)
|
258 |
+
test_feat = test_feat.reshape(C, h * w)
|
259 |
+
sim = target_feat @ test_feat
|
260 |
+
|
261 |
+
sim = sim.reshape(1, 1, h, w)
|
262 |
+
sim = F.interpolate(sim, scale_factor=4, mode="bilinear")
|
263 |
+
sim = predictor.model.postprocess_masks(
|
264 |
+
sim,
|
265 |
+
input_size=predictor.input_size,
|
266 |
+
original_size=predictor.original_size).squeeze()
|
267 |
+
|
268 |
+
# Positive-negative location prior
|
269 |
+
topk_xy_i, topk_label_i, last_xy_i, last_label_i = point_selection(sim, topk=1)
|
270 |
+
topk_xy = np.concatenate([topk_xy_i, last_xy_i], axis=0)
|
271 |
+
topk_label = np.concatenate([topk_label_i, last_label_i], axis=0)
|
272 |
+
|
273 |
+
# Obtain the target guidance for cross-attention layers
|
274 |
+
sim = (sim - sim.mean()) / torch.std(sim)
|
275 |
+
sim = F.interpolate(sim.unsqueeze(0).unsqueeze(0), size=(64, 64), mode="bilinear")
|
276 |
+
attn_sim = sim.sigmoid_().unsqueeze(0).flatten(3)
|
277 |
+
|
278 |
+
# First-step prediction
|
279 |
+
masks, scores, logits, _ = predictor.predict(
|
280 |
+
point_coords=topk_xy,
|
281 |
+
point_labels=topk_label,
|
282 |
+
multimask_output=False,
|
283 |
+
attn_sim=attn_sim, # Target-guided Attention
|
284 |
+
target_embedding=target_embedding # Target-semantic Prompting
|
285 |
+
)
|
286 |
+
best_idx = 0
|
287 |
+
|
288 |
+
# Cascaded Post-refinement-1
|
289 |
+
masks, scores, logits, _ = predictor.predict(
|
290 |
+
point_coords=topk_xy,
|
291 |
+
point_labels=topk_label,
|
292 |
+
mask_input=logits[best_idx: best_idx + 1, :, :],
|
293 |
+
multimask_output=True)
|
294 |
+
best_idx = np.argmax(scores)
|
295 |
+
|
296 |
+
# Cascaded Post-refinement-2
|
297 |
+
y, x = np.nonzero(masks[best_idx])
|
298 |
+
x_min = x.min()
|
299 |
+
x_max = x.max()
|
300 |
+
y_min = y.min()
|
301 |
+
y_max = y.max()
|
302 |
+
input_box = np.array([x_min, y_min, x_max, y_max])
|
303 |
+
masks, scores, logits, _ = predictor.predict(
|
304 |
+
point_coords=topk_xy,
|
305 |
+
point_labels=topk_label,
|
306 |
+
box=input_box[None, :],
|
307 |
+
mask_input=logits[best_idx: best_idx + 1, :, :],
|
308 |
+
multimask_output=True)
|
309 |
+
best_idx = np.argmax(scores)
|
310 |
+
|
311 |
+
final_mask = masks[best_idx]
|
312 |
+
mask_colors = np.zeros((final_mask.shape[0], final_mask.shape[1], 3), dtype=np.uint8)
|
313 |
+
mask_colors[final_mask, :] = np.array([[128, 0, 0]])
|
314 |
+
output_image.append(Image.fromarray((mask_colors * 0.6 + test_image * 0.4).astype('uint8'), 'RGB'))
|
315 |
+
|
316 |
+
return output_image[0].resize((224, 224)), output_image[1].resize((224, 224))
|
317 |
+
|
318 |
+
|
319 |
+
def inference_finetune_train(ic_image, ic_mask, image1, image2):
|
320 |
+
# in context image and mask
|
321 |
+
ic_image = np.array(ic_image.convert("RGB"))
|
322 |
+
ic_mask = np.array(ic_mask.convert("RGB"))
|
323 |
+
|
324 |
+
gt_mask = torch.tensor(ic_mask)[:, :, 0] > 0
|
325 |
+
gt_mask = gt_mask.float().unsqueeze(0).flatten(1).to('cpu')
|
326 |
+
# gt_mask = gt_mask.float().unsqueeze(0).flatten(1)
|
327 |
+
|
328 |
+
sam_type, sam_ckpt = 'vit_h', 'sam_vit_h_4b8939.pth'
|
329 |
+
sam = sam_model_registry[sam_type](checkpoint=sam_ckpt).to('cpu')
|
330 |
+
# sam = sam_model_registry[sam_type](checkpoint=sam_ckpt)
|
331 |
+
for name, param in sam.named_parameters():
|
332 |
+
param.requires_grad = False
|
333 |
+
predictor = SamPredictor(sam)
|
334 |
+
|
335 |
+
#์๊ธฐ ์์น ์ฐ์ ๊ฐ ํ๋
|
336 |
+
print("======> Obtain Self Location Prior" )
|
337 |
+
# Image features encoding
|
338 |
+
ref_mask = predictor.set_image(ic_image, ic_mask)
|
339 |
+
ref_feat = predictor.features.squeeze().permute(1, 2, 0)
|
340 |
+
|
341 |
+
ref_mask = F.interpolate(ref_mask, size=ref_feat.shape[0: 2], mode="bilinear")
|
342 |
+
ref_mask = ref_mask.squeeze()[0]
|
343 |
+
|
344 |
+
# Target feature extraction
|
345 |
+
target_feat = ref_feat[ref_mask > 0]
|
346 |
+
target_feat_mean = target_feat.mean(0)
|
347 |
+
target_feat_max = torch.max(target_feat, dim=0)[0]
|
348 |
+
target_feat = (target_feat_max / 2 + target_feat_mean / 2).unsqueeze(0)
|
349 |
+
|
350 |
+
# Cosine similarity
|
351 |
+
h, w, C = ref_feat.shape
|
352 |
+
target_feat = target_feat / target_feat.norm(dim=-1, keepdim=True)
|
353 |
+
ref_feat = ref_feat / ref_feat.norm(dim=-1, keepdim=True)
|
354 |
+
ref_feat = ref_feat.permute(2, 0, 1).reshape(C, h * w)
|
355 |
+
sim = target_feat @ ref_feat
|
356 |
+
|
357 |
+
# target_feat ์ ์ฅ
|
358 |
+
torch.save(target_feat, 'target_feat.pth')
|
359 |
+
print("target_feat๊ฐ 'target_feat.pth' ํ์ผ๋ก ์ ์ฅ๋์์ต๋๋ค.")
|
360 |
+
|
361 |
+
sim = sim.reshape(1, 1, h, w)
|
362 |
+
sim = F.interpolate(sim, scale_factor=4, mode="bilinear")
|
363 |
+
sim = predictor.model.postprocess_masks(
|
364 |
+
sim,
|
365 |
+
input_size=predictor.input_size,
|
366 |
+
original_size=predictor.original_size).squeeze()
|
367 |
+
|
368 |
+
# Positive location prior
|
369 |
+
topk_xy, topk_label, _, _ = point_selection(sim, topk=1)
|
370 |
+
|
371 |
+
print('======> Start Training')
|
372 |
+
# Learnable mask weights
|
373 |
+
mask_weights = Mask_Weights().to('cpu')
|
374 |
+
# mask_weights = Mask_Weights()
|
375 |
+
mask_weights.train()
|
376 |
+
train_epoch = 1000
|
377 |
+
optimizer = torch.optim.AdamW(mask_weights.parameters(), lr=1e-4, eps=1e-4, betas=(0.9, 0.999), weight_decay=0.01, amsgrad=False)
|
378 |
+
scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, train_epoch)
|
379 |
+
|
380 |
+
for train_idx in range(train_epoch):
|
381 |
+
# Run the decoder
|
382 |
+
masks, scores, logits, logits_high = predictor.predict(
|
383 |
+
point_coords=topk_xy,
|
384 |
+
point_labels=topk_label,
|
385 |
+
multimask_output=True)
|
386 |
+
logits_high = logits_high.flatten(1)
|
387 |
+
|
388 |
+
# Weighted sum three-scale masks
|
389 |
+
weights = torch.cat((1 - mask_weights.weights.sum(0).unsqueeze(0), mask_weights.weights), dim=0)
|
390 |
+
logits_high = logits_high * weights
|
391 |
+
logits_high = logits_high.sum(0).unsqueeze(0)
|
392 |
+
|
393 |
+
dice_loss = calculate_dice_loss(logits_high, gt_mask)
|
394 |
+
focal_loss = calculate_sigmoid_focal_loss(logits_high, gt_mask)
|
395 |
+
loss = dice_loss + focal_loss
|
396 |
+
|
397 |
+
optimizer.zero_grad()
|
398 |
+
loss.backward()
|
399 |
+
optimizer.step()
|
400 |
+
scheduler.step()
|
401 |
+
|
402 |
+
if train_idx % 10 == 0:
|
403 |
+
print('Train Epoch: {:} / {:}'.format(train_idx, train_epoch))
|
404 |
+
current_lr = scheduler.get_last_lr()[0]
|
405 |
+
print('LR: {:.6f}, Dice_Loss: {:.4f}, Focal_Loss: {:.4f}'.format(current_lr, dice_loss.item(), focal_loss.item()))
|
406 |
+
|
407 |
+
|
408 |
+
mask_weights.eval()
|
409 |
+
weights = torch.cat((1 - mask_weights.weights.sum(0).unsqueeze(0), mask_weights.weights), dim=0)
|
410 |
+
weights_np = weights.detach().cpu().numpy()
|
411 |
+
print('======> Mask weights:\n', weights_np)
|
412 |
+
|
413 |
+
# # 1. ๊ฐ์ค์น ์ ์ฅ
|
414 |
+
torch.save(mask_weights.state_dict(), 'mask_weights.pth')
|
415 |
+
print("๊ฐ์ค์น๊ฐ 'mask_weights.pth' ํ์ผ๋ก ์ ์ฅ๋์์ต๋๋ค.")
|
416 |
+
|
417 |
+
#########################Training ๋ ########################################
|
418 |
+
# 2. ํ
์คํธ ์ ์ฉ ์ฝ๋
|
419 |
+
# ๋ชจ๋ธ ์ด๊ธฐํ ๋ฐ ๊ฐ์ค์น ๋ก๋
|
420 |
+
mask_weights = Mask_Weights().to('cpu')
|
421 |
+
mask_weights.load_state_dict(torch.load('Personalize-SAM\mask_weights.pth'))
|
422 |
+
mask_weights.eval() # ํ๊ฐ ๋ชจ๋๋ก ์ค์ (์ถ๊ฐ ํ์ต ๋ฐฉ์ง)
|
423 |
+
|
424 |
+
weights = torch.cat((1 - mask_weights.weights.sum(0).unsqueeze(0), mask_weights.weights), dim=0)
|
425 |
+
weights_np = weights.detach().cpu().numpy()
|
426 |
+
print('======> Mask weights:\n', weights_np)
|
427 |
+
|
428 |
+
print('======> Start Testing')
|
429 |
+
output_image = []
|
430 |
+
|
431 |
+
for test_image in [image1, image2]:
|
432 |
+
test_image = np.array(test_image.convert("RGB"))
|
433 |
+
|
434 |
+
# Image feature encoding
|
435 |
+
predictor.set_image(test_image)
|
436 |
+
test_feat = predictor.features.squeeze()
|
437 |
+
# Image feature encoding
|
438 |
+
predictor.set_image(test_image)
|
439 |
+
test_feat = predictor.features.squeeze()
|
440 |
+
|
441 |
+
# Cosine similarity
|
442 |
+
C, h, w = test_feat.shape
|
443 |
+
test_feat = test_feat / test_feat.norm(dim=0, keepdim=True)
|
444 |
+
test_feat = test_feat.reshape(C, h * w)
|
445 |
+
sim = target_feat @ test_feat
|
446 |
+
|
447 |
+
sim = sim.reshape(1, 1, h, w)
|
448 |
+
sim = F.interpolate(sim, scale_factor=4, mode="bilinear")
|
449 |
+
sim = predictor.model.postprocess_masks(
|
450 |
+
sim,
|
451 |
+
input_size=predictor.input_size,
|
452 |
+
original_size=predictor.original_size).squeeze()
|
453 |
+
|
454 |
+
# Positive location prior ์์ฑ ์์น ์ฐ์ ๊ฐ
|
455 |
+
topk_xy, topk_label, _, _ = point_selection(sim, topk=1)
|
456 |
+
print("์ขํ๊ฐ",topk_xy)
|
457 |
+
|
458 |
+
# First-step prediction
|
459 |
+
masks, scores, logits, logits_high = predictor.predict(
|
460 |
+
point_coords=topk_xy,
|
461 |
+
point_labels=topk_label,
|
462 |
+
multimask_output=True)
|
463 |
+
|
464 |
+
# ์์ธก ์ ์ ์ถ๋ ฅ
|
465 |
+
# print("์์ธก ์ ์ (scores):")
|
466 |
+
# for idx, score in enumerate(scores):
|
467 |
+
# print(f"Mask {idx + 1}: {score.item():.4f}")
|
468 |
+
|
469 |
+
|
470 |
+
# Weighted sum three-scale masks ์ธ ๊ฐ์ง ์ค์ผ์ผ์ ๋ง์คํฌ๋ฅผ ๊ฐ์ค์น ํฉ์ฐํ๋ ๊ณผ์
|
471 |
+
logits_high = logits_high * weights.unsqueeze(-1)
|
472 |
+
logit_high = logits_high.sum(0)
|
473 |
+
mask = (logit_high > 0).detach().cpu().numpy()
|
474 |
+
|
475 |
+
logits = logits * weights_np[..., None]
|
476 |
+
logit = logits.sum(0)
|
477 |
+
|
478 |
+
# Cascaded Post-refinement-1 ๋ชจ๋ธ์ ์ธ๋ถํ๋ ํ์ฒ๋ฆฌ ๋จ๊ณ ์ค ์ฒซ ๋ฒ์งธ ๋จ๊ณ
|
479 |
+
y, x = np.nonzero(mask)
|
480 |
+
x_min = x.min()
|
481 |
+
x_max = x.max()
|
482 |
+
y_min = y.min()
|
483 |
+
y_max = y.max()
|
484 |
+
input_box = np.array([x_min, y_min, x_max, y_max])
|
485 |
+
masks, scores, logits, _ = predictor.predict(
|
486 |
+
point_coords=topk_xy,
|
487 |
+
point_labels=topk_label,
|
488 |
+
box=input_box[None, :],
|
489 |
+
mask_input=logit[None, :, :],
|
490 |
+
multimask_output=True)
|
491 |
+
best_idx = np.argmax(scores)
|
492 |
+
|
493 |
+
# Cascaded Post-refinement-2 ๋ชจ๋ธ์ ์ธ๋ถํ๋ ํ์ฒ๋ฆฌ ๋จ๊ณ ์ค ๋ ๋ฒ์งธ ๋จ๊ณ
|
494 |
+
y, x = np.nonzero(masks[best_idx])
|
495 |
+
x_min = x.min()
|
496 |
+
x_max = x.max()
|
497 |
+
y_min = y.min()
|
498 |
+
y_max = y.max()
|
499 |
+
input_box = np.array([x_min, y_min, x_max, y_max])
|
500 |
+
masks, scores, logits, _ = predictor.predict(
|
501 |
+
point_coords=topk_xy,
|
502 |
+
point_labels=topk_label,
|
503 |
+
box=input_box[None, :],
|
504 |
+
mask_input=logits[best_idx: best_idx + 1, :, :],
|
505 |
+
multimask_output=True)
|
506 |
+
best_idx = np.argmax(scores)
|
507 |
+
|
508 |
+
final_mask = masks[best_idx]
|
509 |
+
|
510 |
+
# ์์ธก ์ ์ ์ถ๋ ฅ
|
511 |
+
print("์์ธก ์ ์ (scores):")
|
512 |
+
for idx, score in enumerate(scores):
|
513 |
+
print(f"Mask {idx + 1}: {score.item():.4f}")
|
514 |
+
# Final mask์ ์ขํ ์ถ์ถ
|
515 |
+
# y_coords, x_coords = np.nonzero(final_mask)
|
516 |
+
# # ์ขํ๋ฅผ (y, x) ํ์์ผ๋ก ๋ฌถ์ด์ ์ถ๋ ฅ
|
517 |
+
# coordinates = list(zip(y_coords, x_coords))
|
518 |
+
# # ์ขํ ์ถ๋ ฅ
|
519 |
+
# print("Segmentation๋ ์ขํ๋ค:")
|
520 |
+
# for coord in coordinates:
|
521 |
+
# print(coord)
|
522 |
+
|
523 |
+
# Image ์์ฑ ๋ฐ ์ ์ ํ์
|
524 |
+
output_img = Image.fromarray((test_image).astype('uint8'), 'RGB')
|
525 |
+
draw = ImageDraw.Draw(output_img)
|
526 |
+
|
527 |
+
# ์ ๋ขฐ๋ ์ ์๋ฅผ ๋ง์คํฌ ์์ญ ์์ ํ์
|
528 |
+
for idx, (mask, score) in enumerate(zip(masks, scores)):
|
529 |
+
y, x = np.nonzero(mask)
|
530 |
+
if len(x) > 0 and len(y) > 0: # ๋ง์คํฌ๊ฐ ๋น์ด์์ง ์์ ๋๋ง ํ
์คํธ ํ์
|
531 |
+
x_center = int(x.mean())
|
532 |
+
y_center = int(y.mean())
|
533 |
+
draw.text((x_center, y_center), f"{score.item():.2f}", fill=(255, 255, 0))
|
534 |
+
# ์ต์ข
๋ง์คํฌ ๋ฐ ์ ์๊ฐ ํฌํจ๋ ์ด๋ฏธ์ง๋ฅผ ๋ฆฌ์คํธ์ ์ถ๊ฐ
|
535 |
+
mask_colors = np.zeros((final_mask.shape[0], final_mask.shape[1], 3), dtype=np.uint8)
|
536 |
+
mask_colors[final_mask, :] = np.array([[128, 0, 0]])
|
537 |
+
overlay_image = Image.fromarray((mask_colors * 0.6 + test_image * 0.4).astype('uint8'), 'RGB')
|
538 |
+
draw_overlay = ImageDraw.Draw(overlay_image)
|
539 |
+
|
540 |
+
for idx, score in enumerate(scores):
|
541 |
+
draw_overlay.text((10, 10 + 20 * idx), f"Mask {idx + 1}: {score.item():.2f}", fill=(255, 255, 0))
|
542 |
+
|
543 |
+
output_image.append(overlay_image)
|
544 |
+
|
545 |
+
# output_image.append(Image.fromarray((mask_colors * 0.6 + test_image * 0.4).astype('uint8'), 'RGB'))
|
546 |
+
|
547 |
+
return output_image[0].resize((224, 224)), output_image[1].resize((224, 224))
|
548 |
+
|
549 |
+
|
550 |
+
# ์ปจํฌ์ด์ ๋ฐ์ด๋ฉ ๋ฐ์ค๋ฅผ ๊ทธ๋ฆฌ๋ ํจ์
|
551 |
+
def draw_contours_and_bboxes(image, mask):
|
552 |
+
contours, _ = cv2.findContours(mask.astype(np.uint8), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
|
553 |
+
|
554 |
+
# ๊ฐ์ฒด ์ ๊ณ์ฐ
|
555 |
+
object_count = len(contours)
|
556 |
+
|
557 |
+
# ์ด๋ฏธ์ง์ ์ปจํฌ์ด์ ๋ฐ์ด๋ฉ ๋ฐ์ค๋ฅผ ๊ทธ๋ฆฌ๊ธฐ
|
558 |
+
for contour in contours:
|
559 |
+
# ๋ฐ์ด๋ฉ ๋ฐ์ค
|
560 |
+
x, y, w, h = cv2.boundingRect(contour)
|
561 |
+
cv2.rectangle(image, (x, y), (x + w, y + h), (0, 255, 0), 2) # ์ด๋ก์ ๋ฐ์ด๋ฉ ๋ฐ์ค
|
562 |
+
|
563 |
+
# ์ปจํฌ์ด ๊ทธ๋ฆฌ๊ธฐ
|
564 |
+
cv2.drawContours(image, [contour], -1, (0, 0, 255), 2) # ๋นจ๊ฐ์ ์ปจํฌ์ด
|
565 |
+
|
566 |
+
return image, object_count
|
567 |
+
|
568 |
+
def inference_finetune_test(image1, image2, image3, image4):
|
569 |
+
# in context image and mask
|
570 |
+
# ic_image = np.array(ic_image.convert("RGB"))
|
571 |
+
# ic_mask = np.array(ic_mask.convert("RGB"))
|
572 |
+
|
573 |
+
# gt_mask = torch.tensor(ic_mask)[:, :, 0] > 0
|
574 |
+
# gt_mask = gt_mask.float().unsqueeze(0).flatten(1).to('cpu')
|
575 |
+
# # gt_mask = gt_mask.float().unsqueeze(0).flatten(1)
|
576 |
+
|
577 |
+
sam_type, sam_ckpt = 'vit_h', 'sam_vit_h_4b8939.pth'
|
578 |
+
sam = sam_model_registry[sam_type](checkpoint=sam_ckpt).to('cpu')
|
579 |
+
# # sam = sam_model_registry[sam_type](checkpoint=sam_ckpt)
|
580 |
+
# for name, param in sam.named_parameters():
|
581 |
+
# param.requires_grad = False
|
582 |
+
predictor = SamPredictor(sam)
|
583 |
+
|
584 |
+
# #์๊ธฐ ์์น ์ฐ์ ๊ฐ ํ๋
|
585 |
+
print("======> Obtain Self Location Prior" )
|
586 |
+
# Image features encoding
|
587 |
+
# ref_mask = predictor.set_image(ic_image, ic_mask)
|
588 |
+
# ref_feat = predictor.features.squeeze().permute(1, 2, 0)
|
589 |
+
|
590 |
+
# ref_mask = F.interpolate(ref_mask, size=ref_feat.shape[0: 2], mode="bilinear")
|
591 |
+
# ref_mask = ref_mask.squeeze()[0]
|
592 |
+
|
593 |
+
# # Target feature extraction
|
594 |
+
# target_feat = ref_feat[ref_mask > 0]
|
595 |
+
# target_feat_mean = target_feat.mean(0)
|
596 |
+
# target_feat_max = torch.max(target_feat, dim=0)[0]
|
597 |
+
# target_feat = (target_feat_max / 2 + target_feat_mean / 2).unsqueeze(0)
|
598 |
+
|
599 |
+
# # Cosine similarity
|
600 |
+
# h, w, C = ref_feat.shape
|
601 |
+
# target_feat = target_feat / target_feat.norm(dim=-1, keepdim=True)
|
602 |
+
# ref_feat = ref_feat / ref_feat.norm(dim=-1, keepdim=True)
|
603 |
+
# ref_feat = ref_feat.permute(2, 0, 1).reshape(C, h * w)
|
604 |
+
# sim = target_feat @ ref_feat
|
605 |
+
|
606 |
+
# sim = sim.reshape(1, 1, h, w)
|
607 |
+
# sim = F.interpolate(sim, scale_factor=4, mode="bilinear")
|
608 |
+
# sim = predictor.model.postprocess_masks(
|
609 |
+
# sim,
|
610 |
+
# input_size=predictor.input_size,
|
611 |
+
# original_size=predictor.original_size).squeeze()
|
612 |
+
|
613 |
+
# # Positive location prior
|
614 |
+
# topk_xy, topk_label, _, _ = point_selection(sim, topk=1)
|
615 |
+
|
616 |
+
# print('======> Start Training')
|
617 |
+
# # Learnable mask weights
|
618 |
+
# mask_weights = Mask_Weights().to('cpu')
|
619 |
+
# # mask_weights = Mask_Weights()
|
620 |
+
# mask_weights.train()
|
621 |
+
# train_epoch = 1000
|
622 |
+
# optimizer = torch.optim.AdamW(mask_weights.parameters(), lr=1e-4, eps=1e-4, betas=(0.9, 0.999), weight_decay=0.01, amsgrad=False)
|
623 |
+
# scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, train_epoch)
|
624 |
+
|
625 |
+
# for train_idx in range(train_epoch):
|
626 |
+
# # Run the decoder
|
627 |
+
# masks, scores, logits, logits_high = predictor.predict(
|
628 |
+
# point_coords=topk_xy,
|
629 |
+
# point_labels=topk_label,
|
630 |
+
# multimask_output=True)
|
631 |
+
# logits_high = logits_high.flatten(1)
|
632 |
+
|
633 |
+
# # Weighted sum three-scale masks
|
634 |
+
# weights = torch.cat((1 - mask_weights.weights.sum(0).unsqueeze(0), mask_weights.weights), dim=0)
|
635 |
+
# logits_high = logits_high * weights
|
636 |
+
# logits_high = logits_high.sum(0).unsqueeze(0)
|
637 |
+
|
638 |
+
# dice_loss = calculate_dice_loss(logits_high, gt_mask)
|
639 |
+
# focal_loss = calculate_sigmoid_focal_loss(logits_high, gt_mask)
|
640 |
+
# loss = dice_loss + focal_loss
|
641 |
+
|
642 |
+
# optimizer.zero_grad()
|
643 |
+
# loss.backward()
|
644 |
+
# optimizer.step()
|
645 |
+
# scheduler.step()
|
646 |
+
|
647 |
+
# if train_idx % 10 == 0:
|
648 |
+
# print('Train Epoch: {:} / {:}'.format(train_idx, train_epoch))
|
649 |
+
# current_lr = scheduler.get_last_lr()[0]
|
650 |
+
# print('LR: {:.6f}, Dice_Loss: {:.4f}, Focal_Loss: {:.4f}'.format(current_lr, dice_loss.item(), focal_loss.item()))
|
651 |
+
|
652 |
+
|
653 |
+
# mask_weights.eval()
|
654 |
+
# weights = torch.cat((1 - mask_weights.weights.sum(0).unsqueeze(0), mask_weights.weights), dim=0)
|
655 |
+
# weights_np = weights.detach().cpu().numpy()
|
656 |
+
# print('======> Mask weights:\n', weights_np)
|
657 |
+
|
658 |
+
# # 1. ๊ฐ์ค์น ์ ์ฅ
|
659 |
+
# torch.save(mask_weights.state_dict(), 'mask_weights.pth')
|
660 |
+
# print("๊ฐ์ค์น๊ฐ 'mask_weights.pth' ํ์ผ๋ก ์ ์ฅ๋์์ต๋๋ค.")
|
661 |
+
|
662 |
+
#########################Training ๋ ########################################
|
663 |
+
# 2. ํ
์คํธ ์ ์ฉ ์ฝ๋
|
664 |
+
# ๋ชจ๋ธ ์ด๊ธฐํ ๋ฐ ๊ฐ์ค์น ๋ก๋
|
665 |
+
mask_weights = Mask_Weights().to('cpu')
|
666 |
+
mask_weights.load_state_dict(torch.load('Personalize-SAM\mask_weights.pth'))
|
667 |
+
mask_weights.eval() # ํ๊ฐ ๋ชจ๋๋ก ์ค์ (์ถ๊ฐ ํ์ต ๋ฐฉ์ง)
|
668 |
+
|
669 |
+
weights = torch.cat((1 - mask_weights.weights.sum(0).unsqueeze(0), mask_weights.weights), dim=0)
|
670 |
+
weights_np = weights.detach().cpu().numpy()
|
671 |
+
print('======> Mask weights:\n', weights_np)
|
672 |
+
|
673 |
+
print('======> Start Testing')
|
674 |
+
output_image = []
|
675 |
+
|
676 |
+
# SAM Segmentation ๊ฒฐ๊ณผ๋ฅผ ์ ์ฅํ dictionary
|
677 |
+
segmentation_results = []
|
678 |
+
|
679 |
+
for test_image in [image1, image2, image3, image4]:
|
680 |
+
test_image = np.array(test_image.convert("RGB"))
|
681 |
+
|
682 |
+
# Image feature encoding
|
683 |
+
predictor.set_image(test_image)
|
684 |
+
test_feat = predictor.features.squeeze()
|
685 |
+
# Image feature encoding
|
686 |
+
predictor.set_image(test_image)
|
687 |
+
test_feat = predictor.features.squeeze()
|
688 |
+
|
689 |
+
# Cosine similarity
|
690 |
+
C, h, w = test_feat.shape
|
691 |
+
test_feat = test_feat / test_feat.norm(dim=0, keepdim=True)
|
692 |
+
test_feat = test_feat.reshape(C, h * w)
|
693 |
+
# target_feat ๋ถ๋ฌ์ค๊ธฐ
|
694 |
+
target_feat = torch.load('Personalize-SAM\\target_feat.pth')
|
695 |
+
sim = target_feat @ test_feat
|
696 |
+
|
697 |
+
sim = sim.reshape(1, 1, h, w)
|
698 |
+
sim = F.interpolate(sim, scale_factor=4, mode="bilinear")
|
699 |
+
sim = predictor.model.postprocess_masks(
|
700 |
+
sim,
|
701 |
+
input_size=predictor.input_size,
|
702 |
+
original_size=predictor.original_size).squeeze()
|
703 |
+
|
704 |
+
# Positive location prior ์์ฑ ์์น ์ฐ์ ๊ฐ
|
705 |
+
topk_xy, topk_label, _, _ = point_selection(sim, topk=1)
|
706 |
+
print("์ขํ๊ฐ",topk_xy)
|
707 |
+
|
708 |
+
# First-step prediction
|
709 |
+
masks, scores, logits, logits_high = predictor.predict(
|
710 |
+
point_coords=topk_xy,
|
711 |
+
point_labels=topk_label,
|
712 |
+
multimask_output=True)
|
713 |
+
|
714 |
+
# ์์ธก ์ ์ ์ถ๋ ฅ
|
715 |
+
# print("์์ธก ์ ์ (scores):")
|
716 |
+
# for idx, score in enumerate(scores):
|
717 |
+
# print(f"Mask {idx + 1}: {score.item():.4f}")
|
718 |
+
|
719 |
+
|
720 |
+
# Weighted sum three-scale masks ์ธ ๊ฐ์ง ์ค์ผ์ผ์ ๋ง์คํฌ๋ฅผ ๊ฐ์ค์น ํฉ์ฐํ๋ ๊ณผ์
|
721 |
+
logits_high = logits_high * weights.unsqueeze(-1)
|
722 |
+
logit_high = logits_high.sum(0)
|
723 |
+
mask = (logit_high > 0).detach().cpu().numpy()
|
724 |
+
|
725 |
+
logits = logits * weights_np[..., None]
|
726 |
+
logit = logits.sum(0)
|
727 |
+
|
728 |
+
# Cascaded Post-refinement-1 ๋ชจ๋ธ์ ์ธ๋ถํ๋ ํ์ฒ๋ฆฌ ๋จ๊ณ ์ค ์ฒซ ๋ฒ์งธ ๋จ๊ณ
|
729 |
+
y, x = np.nonzero(mask)
|
730 |
+
x_min = x.min()
|
731 |
+
x_max = x.max()
|
732 |
+
y_min = y.min()
|
733 |
+
y_max = y.max()
|
734 |
+
input_box = np.array([x_min, y_min, x_max, y_max])
|
735 |
+
masks, scores, logits, _ = predictor.predict(
|
736 |
+
point_coords=topk_xy,
|
737 |
+
point_labels=topk_label,
|
738 |
+
box=input_box[None, :],
|
739 |
+
mask_input=logit[None, :, :],
|
740 |
+
multimask_output=True)
|
741 |
+
best_idx = np.argmax(scores)
|
742 |
+
|
743 |
+
# Cascaded Post-refinement-2 ๋ชจ๋ธ์ ์ธ๋ถํ๋ ํ์ฒ๋ฆฌ ๋จ๊ณ ์ค ๋ ๋ฒ์งธ ๋จ๊ณ
|
744 |
+
y, x = np.nonzero(masks[best_idx])
|
745 |
+
x_min = x.min()
|
746 |
+
x_max = x.max()
|
747 |
+
y_min = y.min()
|
748 |
+
y_max = y.max()
|
749 |
+
input_box = np.array([x_min, y_min, x_max, y_max])
|
750 |
+
masks, scores, logits, _ = predictor.predict(
|
751 |
+
point_coords=topk_xy,
|
752 |
+
point_labels=topk_label,
|
753 |
+
box=input_box[None, :],
|
754 |
+
mask_input=logits[best_idx: best_idx + 1, :, :],
|
755 |
+
multimask_output=True)
|
756 |
+
best_idx = np.argmax(scores)
|
757 |
+
|
758 |
+
final_mask = masks[best_idx]
|
759 |
+
|
760 |
+
# ๊ฒฐ๊ณผ๋ฅผ JSON ํ์์ผ๋ก ์ ์ฅํ dictionary
|
761 |
+
result = {
|
762 |
+
"image": f"image_{test_image}", # ์ด๋ฏธ์ง๋ฅผ ๊ตฌ๋ถํ ์ ์๋ ๏ฟฝ๏ฟฝ์ ํ ์ด๋ฆ์ ์ฌ์ฉ
|
763 |
+
"masks": [],
|
764 |
+
"scores": [],
|
765 |
+
"coordinates": []
|
766 |
+
}
|
767 |
+
|
768 |
+
for idx, (mask, score) in enumerate(zip(masks, scores)):
|
769 |
+
mask_coords = np.array(np.nonzero(mask)).T.tolist() # ๋ง์คํฌ ์ขํ๋ฅผ (y, x) ํ์์ผ๋ก ์ถ์ถ
|
770 |
+
result["masks"].append(mask_coords)
|
771 |
+
result["scores"].append(score.item())
|
772 |
+
|
773 |
+
# ๊ฐ ๋ง์คํฌ์ ๋ํด ์ขํ ์ ๋ณด ์ถ๊ฐ
|
774 |
+
result["coordinates"].append(mask_coords)
|
775 |
+
|
776 |
+
# ๊ฐ ๋ง์คํฌ์ ์ค์ฌ ์ขํ ๊ณ์ฐ
|
777 |
+
if mask_coords: # ์ขํ๊ฐ ์กด์ฌํ๋ ๊ฒฝ์ฐ
|
778 |
+
y_coords, x_coords = zip(*mask_coords)
|
779 |
+
center_y = int(np.mean(y_coords))
|
780 |
+
center_x = int(np.mean(x_coords))
|
781 |
+
|
782 |
+
# ์ด๋ฏธ์ง์ ์ค์ฌ ์ขํ ํ์
|
783 |
+
output_img = Image.fromarray((test_image).astype('uint8'), 'RGB')
|
784 |
+
draw = ImageDraw.Draw(output_img)
|
785 |
+
draw.text((center_x, center_y), f"({center_x}, {center_y})", fill=(255, 0, 0))
|
786 |
+
|
787 |
+
# ํ์๋ ์ด๋ฏธ์ง๋ฅผ ์ถ๋ ฅ
|
788 |
+
output_image.append(output_img)
|
789 |
+
|
790 |
+
segmentation_results.append(result)
|
791 |
+
|
792 |
+
# JSON ํ์ผ๋ก ์ ์ฅ
|
793 |
+
with open("segmentation_results.json", "w") as f:
|
794 |
+
json.dump(segmentation_results, f, indent=4)
|
795 |
+
|
796 |
+
print("Segmentation results saved as 'segmentation_results.json'")
|
797 |
+
|
798 |
+
# ์์ธก ์ ์ ์ถ๋ ฅ
|
799 |
+
print("์์ธก ์ ์ (scores):")
|
800 |
+
for idx, score in enumerate(scores):
|
801 |
+
print(f"Mask {idx + 1}: {score.item():.4f}")
|
802 |
+
# Final mask์ ์ขํ ์ถ์ถ
|
803 |
+
# y_coords, x_coords = np.nonzero(final_mask)
|
804 |
+
# # ์ขํ๋ฅผ (y, x) ํ์์ผ๋ก ๋ฌถ์ด์ ์ถ๋ ฅ
|
805 |
+
# coordinates = list(zip(y_coords, x_coords))
|
806 |
+
# # ์ขํ ์ถ๋ ฅ
|
807 |
+
# print("Segmentation๋ ์ขํ๋ค:")
|
808 |
+
# for coord in coordinates:
|
809 |
+
# print(coord)
|
810 |
+
|
811 |
+
# Image ์์ฑ ๋ฐ ์ ์ ํ์
|
812 |
+
output_img = Image.fromarray((test_image).astype('uint8'), 'RGB')
|
813 |
+
draw = ImageDraw.Draw(output_img)
|
814 |
+
|
815 |
+
|
816 |
+
# segmentation๋ ๊ฐ์ฒด์ ๊ฐ์ ๊ณ์ฐ
|
817 |
+
segmented_count = sum((mask.sum() > 0) for mask in masks) # ํฝ์
ํฉ์ด 0๋ณด๋ค ํฐ ๊ฒฝ์ฐ ์ ํจํ segmentation์ผ๋ก ๊ฐ์ฃผ
|
818 |
+
# draw.text((170, 10), f"Cnt: {segmented_count}", fill=(255, 0, 0)) # segmentation ๊ฐ์ ํ๊ธฐ
|
819 |
+
|
820 |
+
|
821 |
+
# ์ ๋ขฐ๋ ์ ์๋ฅผ ๋ง์คํฌ ์์ญ ์์ ํ์
|
822 |
+
for idx, (mask, score) in enumerate(zip(masks, scores)):
|
823 |
+
y, x = np.nonzero(mask)
|
824 |
+
if len(x) > 0 and len(y) > 0: # ๋ง์คํฌ๊ฐ ๋น์ด์์ง ์์ ๋๋ง ํ
์คํธ ํ์
|
825 |
+
x_center = int(x.mean())
|
826 |
+
y_center = int(y.mean())
|
827 |
+
# draw.text((x_center, y_center), f"{score.item():.2f}", fill=(255, 255, 0))
|
828 |
+
|
829 |
+
|
830 |
+
# ์ต์ข
๋ง์คํฌ ๋ฐ ์ ์๊ฐ ํฌํจ๋ ์ด๋ฏธ์ง๋ฅผ ๋ฆฌ์คํธ์ ์ถ๊ฐ
|
831 |
+
mask_colors = np.zeros((final_mask.shape[0], final_mask.shape[1], 3), dtype=np.uint8)
|
832 |
+
mask_colors[final_mask, :] = np.array([[128, 0, 0]])
|
833 |
+
|
834 |
+
|
835 |
+
# red ๋ง์คํฌ ์์ญ ์ธ์ ๋ถ๋ถ์ ๋ํด์ contour ๋ฐ bounding box ์ ์ฉ
|
836 |
+
test_image_np = np.array(test_image)
|
837 |
+
|
838 |
+
# 'final_mask' ์ธ๋ถ๋ฅผ ๋ง์คํฌ ์์ญ์ผ๋ก ์ง์
|
839 |
+
final_mask_obj = final_mask.astype(np.uint8)
|
840 |
+
|
841 |
+
# inverse_mask์ ๋ํด์ ์ปจํฌ์ด ๋ฐ ๋ฐ์ด๋ฉ ๋ฐ์ค๋ฅผ ๊ทธ๋ฆผ
|
842 |
+
overlay_image, object_count = draw_contours_and_bboxes(test_image_np.copy(), final_mask_obj)
|
843 |
+
|
844 |
+
# ๊ฐ์ฒด ๊ฐ์ ์ถ๋ ฅ
|
845 |
+
print(f"Detected {object_count} objects in the background.")
|
846 |
+
|
847 |
+
# ์ต์ข
์ด๋ฏธ์ง ๋ฐ ์ ์ ํ์
|
848 |
+
overlay_image = Image.fromarray(overlay_image)
|
849 |
+
|
850 |
+
# segmentation๋ ๊ฐ์ฒด ๊ฐ์๋ฅผ ๋ค์ ํ๋ฒ ํ๊ธฐ (์ด๋ฏธ์ง ์ฐ์๋จ ๋ฑ ๋ค๋ฅธ ์์น์)
|
851 |
+
draw_overlay = ImageDraw.Draw(overlay_image)
|
852 |
+
draw_overlay.text((170, 10), f"Cnt: {segmented_count}", fill=(255, 255, 0))
|
853 |
+
|
854 |
+
for idx, score in enumerate(scores):
|
855 |
+
draw_overlay.text((10, 10 + 20 * idx), f"Mask {idx + 1}: {score.item():.2f}", fill=(255, 255, 0))
|
856 |
+
|
857 |
+
output_image.append(overlay_image)
|
858 |
+
|
859 |
+
|
860 |
+
# overlay_image = Image.fromarray((mask_colors * 0.6 + test_image * 0.4).astype('uint8'), 'RGB')
|
861 |
+
# draw_overlay = ImageDraw.Draw(overlay_image)
|
862 |
+
|
863 |
+
# # segmentation๋ ๊ฐ์ฒด ๊ฐ์๋ฅผ ๋ค์ ํ๋ฒ ํ๊ธฐ (์ด๋ฏธ์ง ์ฐ์๋จ ๋ฑ ๋ค๋ฅธ ์์น์)
|
864 |
+
# draw_overlay.text((170, 10), f"Cnt: {segmented_count}", fill=(255, 255, 0))
|
865 |
+
|
866 |
+
|
867 |
+
|
868 |
+
# for idx, score in enumerate(scores):
|
869 |
+
# draw_overlay.text((10, 10 + 20 * idx), f"Mask {idx + 1}: {score.item():.2f}", fill=(255, 255, 0))
|
870 |
+
|
871 |
+
# output_image.append(overlay_image)
|
872 |
+
|
873 |
+
# output_image.append(Image.fromarray((mask_colors * 0.6 + test_image * 0.4).astype('uint8'), 'RGB'))
|
874 |
+
|
875 |
+
return output_image[0].resize((224, 224)), output_image[1].resize((224, 224)), output_image[2].resize((224, 224)), output_image[3].resize((224, 224))
|
876 |
+
|
877 |
+
|
878 |
+
|
879 |
+
description = """
|
880 |
+
<div style="text-align: center; font-weight: bold;">
|
881 |
+
<span style="font-size: 18px" id="paper-info">
|
882 |
+
[<a href="https://github.com/ZrrSkywalker/Personalize-SAM" target="_blank"><font color='black'>Github</font></a>]
|
883 |
+
[<a href="https://arxiv.org/pdf/2305.03048.pdf" target="_blank"><font color='black'>Paper</font></a>]
|
884 |
+
</span>
|
885 |
+
</div>
|
886 |
+
"""
|
887 |
+
|
888 |
+
main = gr.Interface(
|
889 |
+
fn=inference,
|
890 |
+
inputs=[
|
891 |
+
gr.Image(type="pil", label="in context image",),
|
892 |
+
gr.Image(type="pil", label="in context mask"),
|
893 |
+
gr.Image(type="pil", label="test image1"),
|
894 |
+
gr.Image(type="pil", label="test image2"),
|
895 |
+
],
|
896 |
+
outputs=[
|
897 |
+
gr.Image(type="pil", label="output image1"),
|
898 |
+
gr.Image(type="pil", label="output image2"),
|
899 |
+
],
|
900 |
+
allow_flagging="never",
|
901 |
+
title="Personalize Segment Anything Model with 1 Shot",
|
902 |
+
description=description,
|
903 |
+
examples=[
|
904 |
+
["./examples/cat_00.jpg", "./examples/cat_00.png", "./examples/cat_01.jpg", "./examples/cat_02.jpg"],
|
905 |
+
["./examples/colorful_sneaker_00.jpg", "./examples/colorful_sneaker_00.png", "./examples/colorful_sneaker_01.jpg", "./examples/colorful_sneaker_02.jpg"],
|
906 |
+
["./examples/duck_toy_00.jpg", "./examples/duck_toy_00.png", "./examples/duck_toy_01.jpg", "./examples/duck_toy_02.jpg"],
|
907 |
+
]
|
908 |
+
)
|
909 |
+
|
910 |
+
main_scribble = gr.Interface(
|
911 |
+
fn=inference_scribble,
|
912 |
+
inputs=[
|
913 |
+
gr.ImageMask(label="[Stroke] Draw on Image", type="pil"),
|
914 |
+
gr.Image(type="pil", label="test image1"),
|
915 |
+
gr.Image(type="pil", label="test image2"),
|
916 |
+
],
|
917 |
+
outputs=[
|
918 |
+
gr.Image(type="pil", label="output image1"),
|
919 |
+
gr.Image(type="pil", label="output image2"),
|
920 |
+
],
|
921 |
+
allow_flagging="never",
|
922 |
+
title="Personalize Segment Anything Model with 1 Shot",
|
923 |
+
description=description,
|
924 |
+
examples=[
|
925 |
+
["./examples/cat_00.jpg", "./examples/cat_01.jpg", "./examples/cat_02.jpg"],
|
926 |
+
["./examples/colorful_sneaker_00.jpg", "./examples/colorful_sneaker_01.jpg", "./examples/colorful_sneaker_02.jpg"],
|
927 |
+
["./examples/duck_toy_00.jpg", "./examples/duck_toy_01.jpg", "./examples/duck_toy_02.jpg"],
|
928 |
+
]
|
929 |
+
)
|
930 |
+
|
931 |
+
main_finetune_train = gr.Interface(
|
932 |
+
fn=inference_finetune_train,
|
933 |
+
inputs=[
|
934 |
+
gr.Image(type="pil", label="in context image"),
|
935 |
+
gr.Image(type="pil", label="in context mask"),
|
936 |
+
gr.Image(type="pil", label="test image1"),
|
937 |
+
gr.Image(type="pil", label="test image2"),
|
938 |
+
],
|
939 |
+
outputs=[
|
940 |
+
gr.components.Image(type="pil", label="output image1"),
|
941 |
+
gr.components.Image(type="pil", label="output image2"),
|
942 |
+
],
|
943 |
+
allow_flagging="never",
|
944 |
+
title="Personalize Segment Anything Model with 1 Shot Train",
|
945 |
+
description=description,
|
946 |
+
examples=[
|
947 |
+
["./examples/cat_00.jpg", "./examples/cat_00.png", "./examples/cat_01.jpg", "./examples/cat_02.jpg"],
|
948 |
+
["./examples/colorful_sneaker_00.jpg", "./examples/colorful_sneaker_00.png", "./examples/colorful_sneaker_01.jpg", "./examples/colorful_sneaker_02.jpg"],
|
949 |
+
["./examples/duck_toy_00.jpg", "./examples/duck_toy_00.png", "./examples/duck_toy_01.jpg", "./examples/duck_toy_02.jpg"],
|
950 |
+
]
|
951 |
+
)
|
952 |
+
|
953 |
+
|
954 |
+
|
955 |
+
main_finetune_test = gr.Interface(
|
956 |
+
fn=inference_finetune_test,
|
957 |
+
inputs=[
|
958 |
+
gr.Image(type="pil", label="test image1"),
|
959 |
+
gr.Image(type="pil", label="test image2"),
|
960 |
+
gr.Image(type="pil", label="test image3"),
|
961 |
+
gr.Image(type="pil", label="test image4"),
|
962 |
+
],
|
963 |
+
outputs=[
|
964 |
+
gr.components.Image(type="pil", label="output image1"),
|
965 |
+
gr.components.Image(type="pil", label="output image2"),
|
966 |
+
gr.components.Image(type="pil", label="output image3"),
|
967 |
+
gr.components.Image(type="pil", label="output image4"),
|
968 |
+
],
|
969 |
+
allow_flagging="never",
|
970 |
+
title="Personalize Segment Anything Model with 1 Shot Test",
|
971 |
+
description=description,
|
972 |
+
examples=[
|
973 |
+
["./examples/cat_00.jpg", "./examples/cat_00.png", "./examples/cat_01.jpg", "./examples/cat_02.jpg"],
|
974 |
+
["./examples/colorful_sneaker_00.jpg", "./examples/colorful_sneaker_00.png", "./examples/colorful_sneaker_01.jpg", "./examples/colorful_sneaker_02.jpg"],
|
975 |
+
["./examples/duck_toy_00.jpg", "./examples/duck_toy_00.png", "./examples/duck_toy_01.jpg", "./examples/duck_toy_02.jpg"],
|
976 |
+
]
|
977 |
+
)
|
978 |
+
|
979 |
+
|
980 |
+
demo = gr.Blocks()
|
981 |
+
with demo:
|
982 |
+
gr.TabbedInterface(
|
983 |
+
[main_finetune_train, main_finetune_test],
|
984 |
+
["Personalize-SAM-F_train", "Personalize-SAM-F_test"],
|
985 |
+
)
|
986 |
+
|
987 |
+
demo.launch(share=True)
|