CLIPictionary / game.py
Yoann
Added 'Easy' difficulty mode
963fdfb
raw
history blame
6.27 kB
import torch, torchvision, clip, time, math
import matplotlib.pyplot as plt
from model import encoder_image
from sentence import *
##### Get infos & cool facts to display during loadings
with open("infos.txt") as file:
infos = file.readlines()
##### Get css
with open("style.css") as style:
css = "<style>"+ ''.join(style.readlines())+"</style>"
##### 'DIFFICULTY SWITCH' EVENT
def switch_difficulty(var_dict, html_loading):
var_dict["difficulty"] = 1 - var_dict["difficulty"]
title, infos, new_value = loading(html_loading)
return var_dict, title, infos, new_value
##### 'LOADING' EVENT
def loading(html_loading=None):
### This is just to make sure the content changes, which triggers the .change event which, itself, will launch a new game
if html_loading == "<div style=\"display:none;\">0</div>": new_value = "<div style=\"display:none;\">1</div>"
else: new_value = "<div style=\"display:none;\">0</div>"
### Get a random tip
info = np.random.choice(infos)
### Return TITLE, TIP TEXT, NEW HTML CONTENT, CANVAS IMG
return "<h1 id=\"loading\">⌛Loading...</h1>",css+"<div id=\"prediction\"><p id=\"infos\">"+info+"</p></div>",new_value
##### 'NEW GAME' EVENT
def new_game(var_dict,img=None,first_game=False):
print("\n----------Launching new game!")
if None is not var_dict: difficulty = var_dict["difficulty"]
else: difficulty = 1
var_dict = {
"start_time": time.time(),
"total_time": 0,
"found_words": [],
"target_sentence": "",
"guessed_sentence": "",
"parts": [],
"win": 0,
"step": 0,
"prev_steps": [],
"prev_norm": float("inf"),
"tip": "",
"loading": False,
"revertedState": False,
"difficulty": difficulty
}
target = iniSentence(var_dict,first_game=first_game)
### Return TITLE, PREDICTION TEXT, CANVAS IMG, VAR DICT
return "<h1>"+target+"</h1>", getHTML(var_dict,""), None, var_dict
##### PREDICTION TEXT HTML
def getHTML(var_dict,text,win=0):
### Which parts of the sentence have been guessed?
guessed, not_guessed = "", ""
text_words = text.split(" ")
target_words = var_dict["target_sentence"].split(" ")
for i,word in enumerate(text_words):
if i < len(target_words) and word == target_words[i]: guessed += word + " "
else: not_guessed += word + " "
### Display prediction
if win!=1:
html = "<p><span>"+guessed+"</span>"+not_guessed+"</p>"
else:
minutes, seconds = math.floor(var_dict["total_time"]/60), var_dict["total_time"]%60
if minutes < 1 and seconds <= 30: emoji = "🏆😍"
elif minutes < 1: emoji = "😄"
elif minutes < 2: emoji = "😐"
elif minutes < 3: emoji = "😓"
else: emoji = "😱"
time_str = "Total time: "+ ((str(minutes)+"m") if minutes>0 else "") + str(seconds)+"s "+emoji
html = "<p id=\"win\"><span>"+guessed+"</span><br>"+time_str+"</p>"
return css+"<div id=\"prediction\">"+html+"</div>"
##### DRAWING PROCESSING & GAME STATE UPDATE
def process_img(var_dict,img,title):
# Makes sure that start_time is updates for the first game
if var_dict["start_time"] == -1:
var_dict["start_time"] = time.time()
if (None is img):
return getHTML(var_dict,"",win=0),"<h1>"+var_dict["target_sentence"]+"</h1>",var_dict
elif (None is not img) and (var_dict["win"] != 1):
print("-----Processing...")
part = var_dict["parts"][var_dict["step"]]
image = torch.tensor(img).float() / 255
### Detect Cancel event
norm = torch.norm(image)
if norm > var_dict["prev_norm"]:
print("---Cancel Event")
prevState(var_dict)
var_dict["prev_norm"] = norm
### Image preprocessing --> shape (224,224)
max_edge = max(image.shape[0],image.shape[1])
min_edge = min(image.shape[0],image.shape[1])
square_image = torch.ones(max_edge,max_edge)
pad = math.floor((max_edge - min_edge)/2)
if max_edge == image.shape[1]: square_image[pad:pad+min_edge,:] = image
else: square_image[:,pad:pad+min_edge] = image
image = torchvision.transforms.Resize((224,224))(square_image.unsqueeze(0)).repeat(1,3,1,1)
### Computing cosine similarities (drawing<->text embeddings)
with torch.no_grad():
image_features = encoder_image(image)[0]
text_features = torch.tensor(part["embeddings"])
image_features /= image_features.norm()
similarities = torch.matmul(text_features,image_features)
probs = torch.nn.Softmax(dim=-1)(similarities)
### Sort indexes by similarity
idxs = np.argsort(similarities)
### Use top-3 preditions
top3_idxs = idxs[-3:]
classes = part["classes"]
preds = [classes[idx] for idx in top3_idxs]
print(f"Top-3 Predictions: {preds}")
print(f"Top-3 Probabilities: {probs[top3_idxs]}")
### Check if win (-1: bad guess, 0:progress=guessed sentence part, 1:win=guessed whole sentence)
win = updateState(var_dict, preds)
if win == -1:
text = preds[-1]
elif win == 0:
part = var_dict["parts"][var_dict["step"]]
text = var_dict["guessed_sentence"] + link_text(part,"something") + " something"
elif win == 1:
text = var_dict["guessed_sentence"]
if var_dict["total_time"] == 0: var_dict["total_time"] = round(time.time() - var_dict["start_time"])
return getHTML(var_dict,text,var_dict["win"]),"<h1>"+var_dict["target_sentence"]+"</h1>",var_dict
else:
return getHTML(var_dict,var_dict["target_sentence"],win=1),"<h1>"+var_dict["target_sentence"]+"</h1>",var_dict