Yntec commited on
Commit
fb2e920
·
verified ·
1 Parent(s): 42c95df

Upload 2 files

Browse files
Files changed (2) hide show
  1. app.py +62 -75
  2. externalmod.py +24 -105
app.py CHANGED
@@ -1,21 +1,19 @@
1
  import gradio as gr
2
-
3
  from all_models import models
4
- from externalmod import gr_Interface_load, save_image, randomize_seed
5
  import asyncio
6
- import os
7
  from threading import RLock
8
  lock = RLock()
9
- HF_TOKEN = os.environ.get("HF_TOKEN") if os.environ.get("HF_TOKEN") else None # If private or gated models aren't used, ENV setting is unnecessary.
10
-
11
 
12
  def load_fn(models):
13
  global models_load
14
  models_load = {}
 
15
  for model in models:
16
  if model not in models_load.keys():
17
  try:
18
- m = gr_Interface_load(f'models/{model}', hf_token=HF_TOKEN)
19
  except Exception as error:
20
  print(error)
21
  m = gr.Interface(lambda: None, ['text'], ['image'])
@@ -26,10 +24,8 @@ load_fn(models)
26
 
27
 
28
  num_models = 6
29
- inference_timeout = 600
30
  default_models = models[:num_models]
31
- MAX_SEED = 3999999999
32
-
33
 
34
  def extend_choices(choices):
35
  return choices[:num_models] + (num_models - len(choices[:num_models])) * ['NA']
@@ -37,58 +33,45 @@ def extend_choices(choices):
37
 
38
  def update_imgbox(choices):
39
  choices_plus = extend_choices(choices[:num_models])
40
- return [gr.Image(None, label=m, visible=(m!='NA')) for m in choices_plus]
41
-
42
-
43
- def random_choices():
44
- import random
45
- random.seed()
46
- #return random.choices(561, k=num_models)
47
-
48
-
49
- # https://huggingface.co/docs/api-inference/detailed_parameters
50
- # https://huggingface.co/docs/huggingface_hub/package_reference/inference_client
51
- async def infer(model_str, prompt, nprompt="", height=0, width=0, cfg=0, seed=-1, timeout=inference_timeout):
52
- kwargs = {}
53
- if height > 0: kwargs["height"] = height
54
- if width > 0: kwargs["width"] = width
55
- if cfg > 0: cfg = kwargs["guidance_scale"] = cfg
56
- if seed == -1: kwargs["seed"] = randomize_seed()
57
- else: kwargs["seed"] = seed
58
- task = asyncio.create_task(asyncio.to_thread(models_load[model_str].fn,
59
- prompt=prompt, negative_prompt=nprompt, **kwargs, token=HF_TOKEN))
60
  await asyncio.sleep(0)
61
  try:
62
  result = await asyncio.wait_for(task, timeout=timeout)
63
- except asyncio.TimeoutError as e:
64
  print(e)
65
  print(f"Task timed out: {model_str}")
66
  if not task.done(): task.cancel()
67
  result = None
68
- raise Exception(f"Task timed out: {model_str}") from e
69
- except Exception as e:
70
- print(e)
71
- if not task.done(): task.cancel()
72
- result = None
73
- raise Exception() from e
74
- if task.done() and result is not None and not isinstance(result, tuple):
75
  with lock:
76
- png_path = "image.png"
77
- image = save_image(result, png_path, model_str, prompt, nprompt, height, width, cfg, seed)
78
  return image
79
  return None
80
 
81
-
82
- def gen_fn(model_str, prompt, nprompt="", height=0, width=0, steps=0, cfg=0, seed=-1):
 
83
  try:
84
  loop = asyncio.new_event_loop()
85
- result = loop.run_until_complete(infer(model_str, prompt, nprompt,
86
- height, width, steps, cfg, seed, inference_timeout))
87
  except (Exception, asyncio.CancelledError) as e:
88
  print(e)
89
  print(f"Task aborted: {model_str}")
90
  result = None
91
- raise gr.Error(f"Task aborted: {model_str}, Error: {e}")
92
  finally:
93
  loop.close()
94
  return result
@@ -101,48 +84,53 @@ def add_gallery(image, model_str, gallery):
101
  return gallery
102
 
103
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
104
  CSS="""
105
- .gradio-container { max-width: 1200px; margin: 0 auto; !important; }
106
- .output { width=112px; height=112px; max_width=112px; max_height=112px; !important; }
107
- .gallery { min_width=512px; min_height=512px; max_height=1024px; !important; }
108
  .guide { text-align: center; !important; }
109
  """
110
 
111
-
112
  with gr.Blocks(theme='Nymbo/Nymbo_Theme', fill_width=True, css=CSS) as demo:
113
  gr.HTML(
114
  """
115
  <div>
116
- <p> <center>For more options like single model x6 check out <a href="https://huggingface.co/spaces/John6666/Diffusion80XX4sg">Diffusion80XX4sg</a> by John6666!</center>
117
  </p></div>
118
  """
119
  )
120
  with gr.Tab('Huggingface Diffusion'):
121
  with gr.Column(scale=2):
122
- with gr.Group():
123
- txt_input = gr.Textbox(label='Your prompt:', lines=4)
124
- neg_input = gr.Textbox(label='Negative prompt:', lines=1)
125
- with gr.Accordion("Advanced", open=False, visible=True):
126
- with gr.Row():
127
- width = gr.Slider(label="Width", info="If 0, the default value is used.", maximum=1216, step=32, value=0)
128
- height = gr.Slider(label="Height", info="If 0, the default value is used.", maximum=1216, step=32, value=0)
129
- with gr.Row():
130
- cfg = gr.Slider(label="Guidance scale", info="If 0, the default value is used.", maximum=30.0, step=0.1, value=0)
131
- seed = gr.Slider(label="Seed", info="Randomize Seed if -1.", minimum=-1, maximum=MAX_SEED, step=1, value=-1)
132
- seed_rand = gr.Button("Randomize Seed ??", size="sm", variant="secondary")
133
- seed_rand.click(randomize_seed, None, [seed], queue=False)
134
  with gr.Row():
135
- gen_button = gr.Button(f'Generate up to {int(num_models)} images from 10 seconds to 3 minutes total', variant='primary', scale=3)
136
- #random_button = gr.Button(f'Random {int(num_models)} ??', variant='secondary', scale=1)
137
- #gen_button.click(lambda: gr.update(interactive = True), None, stop_button)
138
  gr.Markdown("Scroll down to see more images and select models.", elem_classes="guide")
139
 
140
  with gr.Column(scale=1):
141
  with gr.Group():
142
  with gr.Row():
143
- output = [gr.Image(label=m, show_download_button=True, elem_classes="output",
144
- interactive=False, min_width=80, show_share_button=False, format="png",
145
- visible=True) for m in default_models]
146
  current_models = [gr.Textbox(m, visible=False) for m in default_models]
147
 
148
  with gr.Column(scale=2):
@@ -151,21 +139,20 @@ with gr.Blocks(theme='Nymbo/Nymbo_Theme', fill_width=True, css=CSS) as demo:
151
  preview=True, object_fit="cover", columns=2, rows=2)
152
 
153
  for m, o in zip(current_models, output):
154
- gen_event = gr.on(triggers=[gen_button.click, txt_input.submit], fn=gen_fn,
155
- inputs=[m, txt_input, neg_input, height, width, cfg, seed], outputs=[o],
156
- concurrency_limit=None, queue=False) # Be sure to delete ", queue=False" when activating the stop button
157
  o.change(add_gallery, [o, m, gallery], [gallery])
158
- #stop_button.click(lambda: gr.update(interactive = False), None, stop_button, cancels = [gen_event])
159
 
160
  with gr.Column(scale=4):
161
  with gr.Accordion('Model selection'):
162
  model_choice = gr.CheckboxGroup(models, label = f'Choose up to {int(num_models)} different models from the {len(models)} available!', value=default_models, interactive=True)
163
  model_choice.change(update_imgbox, model_choice, output)
 
164
  model_choice.change(extend_choices, model_choice, current_models)
165
- #random_button.click(random_choices, None, model_choice)
166
 
167
  gr.Markdown("Based on the [TestGen](https://huggingface.co/spaces/derwahnsinn/TestGen) Space by derwahnsinn, the [SpacIO](https://huggingface.co/spaces/RdnUser77/SpacIO_v1) Space by RdnUser77 and Omnibus's Maximum Multiplier!")
168
 
169
- demo.queue(default_concurrency_limit=200, max_size=200)
170
- demo.launch(show_api=False, max_threads=400)
171
- # https://github.com/gradio-app/gradio/issues/6339
 
1
  import gradio as gr
2
+ from random import randint
3
  from all_models import models
4
+ from externalmod import gr_Interface_load
5
  import asyncio
 
6
  from threading import RLock
7
  lock = RLock()
 
 
8
 
9
  def load_fn(models):
10
  global models_load
11
  models_load = {}
12
+
13
  for model in models:
14
  if model not in models_load.keys():
15
  try:
16
+ m = gr_Interface_load(f'models/{model}')
17
  except Exception as error:
18
  print(error)
19
  m = gr.Interface(lambda: None, ['text'], ['image'])
 
24
 
25
 
26
  num_models = 6
 
27
  default_models = models[:num_models]
28
+ timeout = 300
 
29
 
30
  def extend_choices(choices):
31
  return choices[:num_models] + (num_models - len(choices[:num_models])) * ['NA']
 
33
 
34
  def update_imgbox(choices):
35
  choices_plus = extend_choices(choices[:num_models])
36
+ return [gr.Image(None, label = m, visible = (m != 'NA')) for m in choices_plus]
37
+
38
+
39
+ def update_imgbox_gallery(choices):
40
+ choices_plus = extend_choices(choices[:num_models])
41
+ return [gr.Gallery(None, label = m, visible = (m != 'NA')) for m in choices_plus]
42
+
43
+
44
+ async def infer(model_str, prompt, timeout):
45
+ from PIL import Image
46
+ noise = ""
47
+ rand = randint(1, 500)
48
+ for i in range(rand):
49
+ noise += " "
50
+ task = asyncio.create_task(asyncio.to_thread(models_load[model_str], f'{prompt} {noise}'))
 
 
 
 
 
51
  await asyncio.sleep(0)
52
  try:
53
  result = await asyncio.wait_for(task, timeout=timeout)
54
+ except (Exception, asyncio.TimeoutError) as e:
55
  print(e)
56
  print(f"Task timed out: {model_str}")
57
  if not task.done(): task.cancel()
58
  result = None
59
+ if task.done() and result is not None:
 
 
 
 
 
 
60
  with lock:
61
+ image = Image.open(result).convert('RGBA')
 
62
  return image
63
  return None
64
 
65
+ def gen_fn(model_str, prompt):
66
+ if model_str == 'NA':
67
+ return None
68
  try:
69
  loop = asyncio.new_event_loop()
70
+ result = loop.run_until_complete(infer(model_str, prompt, timeout))
 
71
  except (Exception, asyncio.CancelledError) as e:
72
  print(e)
73
  print(f"Task aborted: {model_str}")
74
  result = None
 
75
  finally:
76
  loop.close()
77
  return result
 
84
  return gallery
85
 
86
 
87
+ def gen_fn_gallery(model_str, prompt, gallery):
88
+ if gallery is None: gallery = []
89
+ if model_str == 'NA':
90
+ yield gallery
91
+ try:
92
+ loop = asyncio.new_event_loop()
93
+ result = loop.run_until_complete(infer(model_str, prompt, timeout))
94
+ with lock:
95
+ if result: gallery.insert(0, result)
96
+ except (Exception, asyncio.CancelledError) as e:
97
+ print(e)
98
+ print(f"Task aborted: {model_str}")
99
+ finally:
100
+ loop.close()
101
+ yield gallery
102
+
103
+
104
  CSS="""
105
+ #container { max-width: 1200px; margin: 0 auto; !important; }
106
+ .output { width=112px; height=112px; !important; }
107
+ .gallery { width=100%; min_height=768px; !important; }
108
  .guide { text-align: center; !important; }
109
  """
110
 
 
111
  with gr.Blocks(theme='Nymbo/Nymbo_Theme', fill_width=True, css=CSS) as demo:
112
  gr.HTML(
113
  """
114
  <div>
115
+ <p> <center>For simultaneous generations without hidden queue check out <a href="https://huggingface.co/spaces/Yntec/ToyWorld">Toy World</a>! For more options like single model x6 check out <a href="https://huggingface.co/spaces/John6666/Diffusion80XX4sg">Diffusion80XX4sg</a> by John6666!</center>
116
  </p></div>
117
  """
118
  )
119
  with gr.Tab('Huggingface Diffusion'):
120
  with gr.Column(scale=2):
121
+ txt_input = gr.Textbox(label='Your prompt:', lines=4)
 
 
 
 
 
 
 
 
 
 
 
122
  with gr.Row():
123
+ gen_button = gr.Button(f'Generate up to {int(num_models)} images from 1 to {int(num_models)*3} minutes total', scale=2)
124
+ stop_button = gr.Button('Stop', variant='secondary', interactive=False, scale=1)
125
+ gen_button.click(lambda: gr.update(interactive = True), None, stop_button)
126
  gr.Markdown("Scroll down to see more images and select models.", elem_classes="guide")
127
 
128
  with gr.Column(scale=1):
129
  with gr.Group():
130
  with gr.Row():
131
+ output = [gr.Image(label=m, show_download_button=True, elem_classes="output", interactive=False, min_width=80, show_share_button=False, visible=True) for m in default_models]
132
+ #output = [gr.Image(label=m, show_download_button=True, elem_classes="output", interactive=False, show_share_button=True) for m in default_models]
133
+ #output = [gr.Gallery(label=m, show_download_button=True, elem_classes="output", interactive=False, show_share_button=True, container=True, format="png", object_fit="cover") for m in default_models]
134
  current_models = [gr.Textbox(m, visible=False) for m in default_models]
135
 
136
  with gr.Column(scale=2):
 
139
  preview=True, object_fit="cover", columns=2, rows=2)
140
 
141
  for m, o in zip(current_models, output):
142
+ #gen_event = gen_button.click(gen_fn, [m, txt_input], o)
143
+ #gen_event = gen_button.click(gen_fn_gallery, [m, txt_input, o], o)
144
+ gen_event = gr.on(triggers=[gen_button.click, txt_input.submit], fn=gen_fn, inputs=[m, txt_input], outputs=[o])
145
  o.change(add_gallery, [o, m, gallery], [gallery])
146
+ stop_button.click(lambda: gr.update(interactive = False), None, stop_button, cancels = [gen_event])
147
 
148
  with gr.Column(scale=4):
149
  with gr.Accordion('Model selection'):
150
  model_choice = gr.CheckboxGroup(models, label = f'Choose up to {int(num_models)} different models from the {len(models)} available!', value=default_models, interactive=True)
151
  model_choice.change(update_imgbox, model_choice, output)
152
+ #model_choice.change(update_imgbox_gallery, model_choice, output)
153
  model_choice.change(extend_choices, model_choice, current_models)
 
154
 
155
  gr.Markdown("Based on the [TestGen](https://huggingface.co/spaces/derwahnsinn/TestGen) Space by derwahnsinn, the [SpacIO](https://huggingface.co/spaces/RdnUser77/SpacIO_v1) Space by RdnUser77 and Omnibus's Maximum Multiplier!")
156
 
157
+ demo.queue()
158
+ demo.launch()
 
externalmod.py CHANGED
@@ -9,7 +9,7 @@ import re
9
  import tempfile
10
  import warnings
11
  from pathlib import Path
12
- from typing import TYPE_CHECKING, Callable, Literal
13
 
14
  import httpx
15
  import huggingface_hub
@@ -33,15 +33,11 @@ if TYPE_CHECKING:
33
  from gradio.interface import Interface
34
 
35
 
36
- HF_TOKEN = os.environ.get("HF_TOKEN") if os.environ.get("HF_TOKEN") else None # If private or gated models aren't used, ENV setting is unnecessary.
37
- server_timeout = 600
38
-
39
-
40
  @document()
41
  def load(
42
  name: str,
43
  src: str | None = None,
44
- hf_token: str | Literal[False] | None = None,
45
  alias: str | None = None,
46
  **kwargs,
47
  ) -> Blocks:
@@ -52,7 +48,7 @@ def load(
52
  Parameters:
53
  name: the name of the model (e.g. "gpt2" or "facebook/bart-base") or space (e.g. "flax-community/spanish-gpt2"), can include the `src` as prefix (e.g. "models/facebook/bart-base")
54
  src: the source of the model: `models` or `spaces` (or leave empty if source is provided as a prefix in `name`)
55
- hf_token: optional access token for loading private Hugging Face Hub models or spaces. Will default to the locally saved token if not provided. Pass `token=False` if you don't want to send your token to the server. Find your token here: https://huggingface.co/settings/tokens. Warning: only provide a token if you are loading a trusted private Space as it can be read by the Space you are loading.
56
  alias: optional string used as the name of the loaded model instead of the default name (only applies if loading a Space running Gradio 2.x)
57
  Returns:
58
  a Gradio Blocks object for the given model
@@ -69,7 +65,7 @@ def load(
69
  def load_blocks_from_repo(
70
  name: str,
71
  src: str | None = None,
72
- hf_token: str | Literal[False] | None = None,
73
  alias: str | None = None,
74
  **kwargs,
75
  ) -> Blocks:
@@ -93,7 +89,7 @@ def load_blocks_from_repo(
93
  if src.lower() not in factory_methods:
94
  raise ValueError(f"parameter: src must be one of {factory_methods.keys()}")
95
 
96
- if hf_token is not None and hf_token is not False:
97
  if Context.hf_token is not None and Context.hf_token != hf_token:
98
  warnings.warn(
99
  """You are loading a model/Space with a different access token than the one you used to load a previous model/Space. This is not recommended, as it may cause unexpected behavior."""
@@ -104,16 +100,12 @@ def load_blocks_from_repo(
104
  return blocks
105
 
106
 
107
- def from_model(
108
- model_name: str, hf_token: str | Literal[False] | None, alias: str | None, **kwargs
109
- ):
110
  model_url = f"https://huggingface.co/{model_name}"
111
  api_url = f"https://api-inference.huggingface.co/models/{model_name}"
112
  print(f"Fetching model from: {model_url}")
113
 
114
- headers = (
115
- {} if hf_token in [False, None] else {"Authorization": f"Bearer {hf_token}"}
116
- )
117
  response = httpx.request("GET", api_url, headers=headers)
118
  if response.status_code != 200:
119
  raise ModelNotFoundError(
@@ -123,7 +115,7 @@ def from_model(
123
 
124
  headers["X-Wait-For-Model"] = "true"
125
  client = huggingface_hub.InferenceClient(
126
- model=model_name, headers=headers, token=hf_token, timeout=server_timeout,
127
  )
128
 
129
  # For tasks that are not yet supported by the InferenceClient
@@ -373,14 +365,10 @@ def from_model(
373
  else:
374
  raise ValueError(f"Unsupported pipeline type: {p}")
375
 
376
- def query_huggingface_inference_endpoints(*data, **kwargs):
377
  if preprocess is not None:
378
  data = preprocess(*data)
379
- try:
380
- data = fn(*data, **kwargs) # type: ignore
381
- except huggingface_hub.utils.HfHubHTTPError as e:
382
- if "429" in str(e):
383
- raise TooManyRequestsError() from e
384
  if postprocess is not None:
385
  data = postprocess(data) # type: ignore
386
  return data
@@ -392,7 +380,7 @@ def from_model(
392
  "inputs": inputs,
393
  "outputs": outputs,
394
  "title": model_name,
395
- #"examples": examples,
396
  }
397
 
398
  kwargs = dict(interface_info, **kwargs)
@@ -403,12 +391,19 @@ def from_model(
403
  def from_spaces(
404
  space_name: str, hf_token: str | None, alias: str | None, **kwargs
405
  ) -> Blocks:
 
 
 
 
 
 
 
406
  space_url = f"https://huggingface.co/spaces/{space_name}"
407
 
408
  print(f"Fetching Space from: {space_url}")
409
 
410
  headers = {}
411
- if hf_token not in [False, None]:
412
  headers["Authorization"] = f"Bearer {hf_token}"
413
 
414
  iframe_url = (
@@ -445,7 +440,8 @@ def from_spaces(
445
  "Blocks or Interface locally. You may find this Guide helpful: "
446
  "https://gradio.app/using_blocks_like_functions/"
447
  )
448
- return from_spaces_blocks(space=space_name, hf_token=hf_token)
 
449
 
450
 
451
  def from_spaces_blocks(space: str, hf_token: str | None) -> Blocks:
@@ -490,7 +486,7 @@ def from_spaces_interface(
490
  config = external_utils.streamline_spaces_interface(config)
491
  api_url = f"{iframe_url}/api/predict/"
492
  headers = {"Content-Type": "application/json"}
493
- if hf_token not in [False, None]:
494
  headers["Authorization"] = f"Bearer {hf_token}"
495
 
496
  # The function should call the API with preprocessed data
@@ -530,83 +526,6 @@ def gr_Interface_load(
530
  src: str | None = None,
531
  hf_token: str | None = None,
532
  alias: str | None = None,
533
- **kwargs, # ignore
534
  ) -> Blocks:
535
- try:
536
- return load_blocks_from_repo(name, src, hf_token, alias)
537
- except Exception as e:
538
- print(e)
539
- return gradio.Interface(lambda: None, ['text'], ['image'])
540
-
541
-
542
- def list_uniq(l):
543
- return sorted(set(l), key=l.index)
544
-
545
-
546
- def get_status(model_name: str):
547
- from huggingface_hub import AsyncInferenceClient
548
- client = AsyncInferenceClient(token=HF_TOKEN, timeout=10)
549
- return client.get_model_status(model_name)
550
-
551
-
552
- def is_loadable(model_name: str, force_gpu: bool = False):
553
- try:
554
- status = get_status(model_name)
555
- except Exception as e:
556
- print(e)
557
- print(f"Couldn't load {model_name}.")
558
- return False
559
- gpu_state = isinstance(status.compute_type, dict) and "gpu" in status.compute_type.keys()
560
- if status is None or status.state not in ["Loadable", "Loaded"] or (force_gpu and not gpu_state):
561
- print(f"Couldn't load {model_name}. Model state:'{status.state}', GPU:{gpu_state}")
562
- return status is not None and status.state in ["Loadable", "Loaded"] and (not force_gpu or gpu_state)
563
-
564
-
565
- def find_model_list(author: str="", tags: list[str]=[], not_tag="", sort: str="last_modified", limit: int=30, force_gpu=False, check_status=False):
566
- from huggingface_hub import HfApi
567
- api = HfApi(token=HF_TOKEN)
568
- default_tags = ["diffusers"]
569
- if not sort: sort = "last_modified"
570
- limit = limit * 20 if check_status and force_gpu else limit * 5
571
- models = []
572
- try:
573
- model_infos = api.list_models(author=author, #task="text-to-image",
574
- tags=list_uniq(default_tags + tags), cardData=True, sort=sort, limit=limit)
575
- except Exception as e:
576
- print(f"Error: Failed to list models.")
577
- print(e)
578
- return models
579
- for model in model_infos:
580
- if not model.private and not model.gated or HF_TOKEN is not None:
581
- loadable = is_loadable(model.id, force_gpu) if check_status else True
582
- if not_tag and not_tag in model.tags or not loadable: continue
583
- models.append(model.id)
584
- if len(models) == limit: break
585
- return models
586
-
587
-
588
- def save_image(image, savefile, modelname, prompt, nprompt, height=0, width=0, steps=0, cfg=0, seed=-1):
589
- from PIL import Image, PngImagePlugin
590
- import json
591
- try:
592
- metadata = {"prompt": prompt, "negative_prompt": nprompt, "Model": {"Model": modelname.split("/")[-1]}}
593
- if steps > 0: metadata["num_inference_steps"] = steps
594
- if cfg > 0: metadata["guidance_scale"] = cfg
595
- if seed != -1: metadata["seed"] = seed
596
- if width > 0 and height > 0: metadata["resolution"] = f"{width} x {height}"
597
- metadata_str = json.dumps(metadata)
598
- info = PngImagePlugin.PngInfo()
599
- info.add_text("metadata", metadata_str)
600
- image.save(savefile, "PNG", pnginfo=info)
601
- return str(Path(savefile).resolve())
602
- except Exception as e:
603
- print(f"Failed to save image file: {e}")
604
- raise Exception(f"Failed to save image file:") from e
605
-
606
-
607
- def randomize_seed():
608
- from random import seed, randint
609
- MAX_SEED = 2**32-1
610
- seed()
611
- rseed = randint(0, MAX_SEED)
612
- return rseed
 
9
  import tempfile
10
  import warnings
11
  from pathlib import Path
12
+ from typing import TYPE_CHECKING, Callable
13
 
14
  import httpx
15
  import huggingface_hub
 
33
  from gradio.interface import Interface
34
 
35
 
 
 
 
 
36
  @document()
37
  def load(
38
  name: str,
39
  src: str | None = None,
40
+ hf_token: str | None = None,
41
  alias: str | None = None,
42
  **kwargs,
43
  ) -> Blocks:
 
48
  Parameters:
49
  name: the name of the model (e.g. "gpt2" or "facebook/bart-base") or space (e.g. "flax-community/spanish-gpt2"), can include the `src` as prefix (e.g. "models/facebook/bart-base")
50
  src: the source of the model: `models` or `spaces` (or leave empty if source is provided as a prefix in `name`)
51
+ hf_token: optional access token for loading private Hugging Face Hub models or spaces. Find your token here: https://huggingface.co/settings/tokens. Warning: only provide this if you are loading a trusted private Space as it can be read by the Space you are loading.
52
  alias: optional string used as the name of the loaded model instead of the default name (only applies if loading a Space running Gradio 2.x)
53
  Returns:
54
  a Gradio Blocks object for the given model
 
65
  def load_blocks_from_repo(
66
  name: str,
67
  src: str | None = None,
68
+ hf_token: str | None = None,
69
  alias: str | None = None,
70
  **kwargs,
71
  ) -> Blocks:
 
89
  if src.lower() not in factory_methods:
90
  raise ValueError(f"parameter: src must be one of {factory_methods.keys()}")
91
 
92
+ if hf_token is not None:
93
  if Context.hf_token is not None and Context.hf_token != hf_token:
94
  warnings.warn(
95
  """You are loading a model/Space with a different access token than the one you used to load a previous model/Space. This is not recommended, as it may cause unexpected behavior."""
 
100
  return blocks
101
 
102
 
103
+ def from_model(model_name: str, hf_token: str | None, alias: str | None, **kwargs):
 
 
104
  model_url = f"https://huggingface.co/{model_name}"
105
  api_url = f"https://api-inference.huggingface.co/models/{model_name}"
106
  print(f"Fetching model from: {model_url}")
107
 
108
+ headers = {"Authorization": f"Bearer {hf_token}"} if hf_token is not None else {}
 
 
109
  response = httpx.request("GET", api_url, headers=headers)
110
  if response.status_code != 200:
111
  raise ModelNotFoundError(
 
115
 
116
  headers["X-Wait-For-Model"] = "true"
117
  client = huggingface_hub.InferenceClient(
118
+ model=model_name, headers=headers, token=hf_token,
119
  )
120
 
121
  # For tasks that are not yet supported by the InferenceClient
 
365
  else:
366
  raise ValueError(f"Unsupported pipeline type: {p}")
367
 
368
+ def query_huggingface_inference_endpoints(*data):
369
  if preprocess is not None:
370
  data = preprocess(*data)
371
+ data = fn(*data) # type: ignore
 
 
 
 
372
  if postprocess is not None:
373
  data = postprocess(data) # type: ignore
374
  return data
 
380
  "inputs": inputs,
381
  "outputs": outputs,
382
  "title": model_name,
383
+ # "examples": examples,
384
  }
385
 
386
  kwargs = dict(interface_info, **kwargs)
 
391
  def from_spaces(
392
  space_name: str, hf_token: str | None, alias: str | None, **kwargs
393
  ) -> Blocks:
394
+ client = Client(
395
+ space_name,
396
+ hf_token=hf_token,
397
+ download_files=False,
398
+ _skip_components=False,
399
+ )
400
+
401
  space_url = f"https://huggingface.co/spaces/{space_name}"
402
 
403
  print(f"Fetching Space from: {space_url}")
404
 
405
  headers = {}
406
+ if hf_token is not None:
407
  headers["Authorization"] = f"Bearer {hf_token}"
408
 
409
  iframe_url = (
 
440
  "Blocks or Interface locally. You may find this Guide helpful: "
441
  "https://gradio.app/using_blocks_like_functions/"
442
  )
443
+ if client.app_version < version.Version("4.0.0b14"):
444
+ return from_spaces_blocks(space=space_name, hf_token=hf_token)
445
 
446
 
447
  def from_spaces_blocks(space: str, hf_token: str | None) -> Blocks:
 
486
  config = external_utils.streamline_spaces_interface(config)
487
  api_url = f"{iframe_url}/api/predict/"
488
  headers = {"Content-Type": "application/json"}
489
+ if hf_token is not None:
490
  headers["Authorization"] = f"Bearer {hf_token}"
491
 
492
  # The function should call the API with preprocessed data
 
526
  src: str | None = None,
527
  hf_token: str | None = None,
528
  alias: str | None = None,
529
+ **kwargs,
530
  ) -> Blocks:
531
+ return load_blocks_from_repo(name, src, hf_token, alias)