Update app.py
Browse files
app.py
CHANGED
@@ -1,18 +1,16 @@
|
|
1 |
-
from fastapi import FastAPI, HTTPException, Request
|
2 |
-
from pydantic import BaseModel
|
3 |
-
import uvicorn
|
4 |
-
import requests
|
5 |
-
import asyncio
|
6 |
import os
|
7 |
import io
|
8 |
import time
|
9 |
-
|
10 |
-
|
11 |
from tqdm import tqdm
|
|
|
|
|
|
|
12 |
|
13 |
app = FastAPI()
|
14 |
|
15 |
-
# Configuración de
|
16 |
model_configs = [
|
17 |
{"repo_id": "Ffftdtd5dtft/gpt2-xl-Q2_K-GGUF", "filename": "gpt2-xl-q2_k.gguf", "name": "GPT-2 XL"},
|
18 |
{"repo_id": "Ffftdtd5dtft/Meta-Llama-3.1-8B-Instruct-Q2_K-GGUF", "filename": "meta-llama-3.1-8b-instruct-q2_k.gguf", "name": "Meta Llama 3.1-8B Instruct"},
|
@@ -35,25 +33,24 @@ model_configs = [
|
|
35 |
class ModelManager:
|
36 |
def __init__(self):
|
37 |
self.models = {}
|
38 |
-
self.model_parts = {}
|
39 |
-
self.load_lock = asyncio.Lock()
|
40 |
-
self.index_lock = asyncio.Lock()
|
41 |
self.part_size = 1024 * 1024 # Tamaño de cada parte en bytes (1 MB)
|
42 |
-
self.max_loading_time = 0 # Tiempo máximo en segundos para cargar un modelo
|
43 |
|
44 |
async def download_model_to_memory(self, model_config):
|
45 |
url = f"https://huggingface.co/{model_config['repo_id']}/resolve/main/{model_config['filename']}"
|
46 |
print(f"Descargando modelo desde {url}")
|
47 |
try:
|
|
|
48 |
response = requests.get(url)
|
49 |
response.raise_for_status()
|
50 |
-
|
51 |
-
|
|
|
|
|
|
|
52 |
except requests.RequestException as e:
|
53 |
raise HTTPException(status_code=500, detail=f"Error al descargar el modelo: {e}")
|
54 |
|
55 |
-
async def save_model_to_temp_file(self, model_config):
|
56 |
-
model_file = await self.download_model_to_memory(model_config)
|
57 |
temp_filename = f"/tmp/{model_config['filename']}"
|
58 |
print(f"Guardando el modelo en {temp_filename}")
|
59 |
with open(temp_filename, 'wb') as f:
|
@@ -62,41 +59,39 @@ class ModelManager:
|
|
62 |
return temp_filename
|
63 |
|
64 |
async def load_model(self, model_config):
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
print(f"Error al cargar el modelo: {e}")
|
95 |
|
96 |
async def handle_large_model(self, model_filename, model_config):
|
97 |
total_size = os.path.getsize(model_filename)
|
98 |
num_parts = (total_size + self.part_size - 1) // self.part_size
|
99 |
-
|
100 |
print(f"Modelo {model_config['name']} dividido en {num_parts} partes")
|
101 |
with open(model_filename, 'rb') as file:
|
102 |
for i in tqdm(range(num_parts), desc=f"Indexando {model_config['name']}"):
|
@@ -107,42 +102,31 @@ class ModelManager:
|
|
107 |
await self.index_model_part(model_part, i)
|
108 |
|
109 |
async def index_model_part(self, model_part, part_index):
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
|
|
115 |
|
116 |
async def generate_response(self, user_input):
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
parts.append(generated_text)
|
135 |
-
else:
|
136 |
-
parts = [generated_text]
|
137 |
-
|
138 |
-
print(f"Respuesta generada usando el modelo {model_data['model']} en {elapsed_time:.2f} segundos")
|
139 |
-
return {
|
140 |
-
'model_name': model_data['model'],
|
141 |
-
'generated_text_parts': parts
|
142 |
-
}
|
143 |
-
except Exception as e:
|
144 |
-
print(f"Error al generar respuesta con el modelo {model_data['model']}: {e}")
|
145 |
-
return {'model_name': model_data['model'], 'error': str(e)}
|
146 |
|
147 |
@app.post("/generate/")
|
148 |
async def generate(request: Request):
|
@@ -151,21 +135,14 @@ async def generate(request: Request):
|
|
151 |
if not user_input:
|
152 |
raise HTTPException(status_code=400, detail="Se requiere una entrada de usuario.")
|
153 |
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
return {"responses": responses}
|
160 |
-
except Exception as e:
|
161 |
-
raise HTTPException(status_code=500, detail=str(e))
|
162 |
|
163 |
def start_uvicorn():
|
164 |
uvicorn.run(app, host="0.0.0.0", port=7860)
|
165 |
|
166 |
if __name__ == "__main__":
|
167 |
-
|
168 |
-
model_manager = ModelManager()
|
169 |
-
tasks = [model_manager.load_model(config) for config in model_configs]
|
170 |
-
loop.run_until_complete(asyncio.gather(*tasks))
|
171 |
-
start_uvicorn()
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import os
|
2 |
import io
|
3 |
import time
|
4 |
+
import asyncio
|
5 |
+
import requests
|
6 |
from tqdm import tqdm
|
7 |
+
from fastapi import FastAPI, HTTPException, Request
|
8 |
+
import uvicorn
|
9 |
+
from llama_cpp import Llama
|
10 |
|
11 |
app = FastAPI()
|
12 |
|
13 |
+
# Configuración de modelos
|
14 |
model_configs = [
|
15 |
{"repo_id": "Ffftdtd5dtft/gpt2-xl-Q2_K-GGUF", "filename": "gpt2-xl-q2_k.gguf", "name": "GPT-2 XL"},
|
16 |
{"repo_id": "Ffftdtd5dtft/Meta-Llama-3.1-8B-Instruct-Q2_K-GGUF", "filename": "meta-llama-3.1-8b-instruct-q2_k.gguf", "name": "Meta Llama 3.1-8B Instruct"},
|
|
|
33 |
class ModelManager:
|
34 |
def __init__(self):
|
35 |
self.models = {}
|
|
|
|
|
|
|
36 |
self.part_size = 1024 * 1024 # Tamaño de cada parte en bytes (1 MB)
|
|
|
37 |
|
38 |
async def download_model_to_memory(self, model_config):
|
39 |
url = f"https://huggingface.co/{model_config['repo_id']}/resolve/main/{model_config['filename']}"
|
40 |
print(f"Descargando modelo desde {url}")
|
41 |
try:
|
42 |
+
start_time = time.time()
|
43 |
response = requests.get(url)
|
44 |
response.raise_for_status()
|
45 |
+
model_file = io.BytesIO(response.content)
|
46 |
+
end_time = time.time()
|
47 |
+
download_duration = end_time - start_time
|
48 |
+
print(f"Descarga completa para {model_config['name']} en {download_duration:.2f} segundos")
|
49 |
+
return model_file
|
50 |
except requests.RequestException as e:
|
51 |
raise HTTPException(status_code=500, detail=f"Error al descargar el modelo: {e}")
|
52 |
|
53 |
+
async def save_model_to_temp_file(self, model_file, model_config):
|
|
|
54 |
temp_filename = f"/tmp/{model_config['filename']}"
|
55 |
print(f"Guardando el modelo en {temp_filename}")
|
56 |
with open(temp_filename, 'wb') as f:
|
|
|
59 |
return temp_filename
|
60 |
|
61 |
async def load_model(self, model_config):
|
62 |
+
model_file = await self.download_model_to_memory(model_config)
|
63 |
+
temp_filename = await self.save_model_to_temp_file(model_file, model_config)
|
64 |
+
try:
|
65 |
+
start_time = time.time()
|
66 |
+
print(f"Cargando modelo desde {temp_filename}")
|
67 |
+
llama = Llama.load(temp_filename)
|
68 |
+
end_time = time.time()
|
69 |
+
load_duration = end_time - start_time
|
70 |
+
if load_duration > 0:
|
71 |
+
print(f"Modelo {model_config['name']} tardó {load_duration:.2f} segundos en cargar, dividiendo automáticamente")
|
72 |
+
await self.handle_large_model(temp_filename, model_config)
|
73 |
+
else:
|
74 |
+
print(f"Modelo {model_config['name']} cargado correctamente en {load_duration:.2f} segundos")
|
75 |
+
tokenizer = llama.tokenizer
|
76 |
+
model_data = {
|
77 |
+
'model': llama,
|
78 |
+
'tokenizer': tokenizer,
|
79 |
+
'pad_token': tokenizer.pad_token,
|
80 |
+
'pad_token_id': tokenizer.pad_token_id,
|
81 |
+
'eos_token': tokenizer.eos_token,
|
82 |
+
'eos_token_id': tokenizer.eos_token_id,
|
83 |
+
'bos_token': tokenizer.bos_token,
|
84 |
+
'bos_token_id': tokenizer.bos_token_id,
|
85 |
+
'unk_token': tokenizer.unk_token,
|
86 |
+
'unk_token_id': tokenizer.unk_token_id
|
87 |
+
}
|
88 |
+
self.models[model_config['name']] = model_data
|
89 |
+
except Exception as e:
|
90 |
+
print(f"Error al cargar el modelo: {e}")
|
|
|
91 |
|
92 |
async def handle_large_model(self, model_filename, model_config):
|
93 |
total_size = os.path.getsize(model_filename)
|
94 |
num_parts = (total_size + self.part_size - 1) // self.part_size
|
|
|
95 |
print(f"Modelo {model_config['name']} dividido en {num_parts} partes")
|
96 |
with open(model_filename, 'rb') as file:
|
97 |
for i in tqdm(range(num_parts), desc=f"Indexando {model_config['name']}"):
|
|
|
102 |
await self.index_model_part(model_part, i)
|
103 |
|
104 |
async def index_model_part(self, model_part, part_index):
|
105 |
+
part_name = f"part_{part_index}"
|
106 |
+
print(f"Indexando parte {part_index}")
|
107 |
+
temp_filename = f"/tmp/{part_name}.gguf"
|
108 |
+
with open(temp_filename, 'wb') as f:
|
109 |
+
f.write(model_part.getvalue())
|
110 |
+
print(f"Parte {part_index} indexada y guardada")
|
111 |
|
112 |
async def generate_response(self, user_input):
|
113 |
+
results = []
|
114 |
+
for model_name, model_data in self.models.items():
|
115 |
+
print(f"Generando respuesta con el modelo {model_name}")
|
116 |
+
try:
|
117 |
+
tokenizer = model_data['tokenizer']
|
118 |
+
input_ids = tokenizer(user_input, return_tensors="pt").input_ids
|
119 |
+
outputs = model_data['model'].generate(input_ids)
|
120 |
+
generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
121 |
+
parts = [generated_text[i:i + 1000] for i in range(0, len(generated_text), 1000)]
|
122 |
+
results.append({
|
123 |
+
'model_name': model_name,
|
124 |
+
'generated_text_parts': parts
|
125 |
+
})
|
126 |
+
except Exception as e:
|
127 |
+
print(f"Error al generar respuesta con el modelo {model_name}: {e}")
|
128 |
+
results.append({'model_name': model_name, 'error': str(e)})
|
129 |
+
return results
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
130 |
|
131 |
@app.post("/generate/")
|
132 |
async def generate(request: Request):
|
|
|
135 |
if not user_input:
|
136 |
raise HTTPException(status_code=400, detail="Se requiere una entrada de usuario.")
|
137 |
|
138 |
+
model_manager = ModelManager()
|
139 |
+
tasks = [model_manager.load_model(config) for config in model_configs]
|
140 |
+
await asyncio.gather(*tasks)
|
141 |
+
responses = await model_manager.generate_response(user_input)
|
142 |
+
return {"responses": responses}
|
|
|
|
|
|
|
143 |
|
144 |
def start_uvicorn():
|
145 |
uvicorn.run(app, host="0.0.0.0", port=7860)
|
146 |
|
147 |
if __name__ == "__main__":
|
148 |
+
asyncio.run(start_uvicorn())
|
|
|
|
|
|
|
|