Spaces:
Running
on
Zero
Running
on
Zero
# -*- coding: utf-8 -*- | |
import os | |
import time | |
import numpy as np | |
import warnings | |
import random | |
from omegaconf.listconfig import ListConfig | |
from webdataset import pipelinefilter | |
import torch | |
import torchvision.transforms.functional as TVF | |
from torchvision.transforms import InterpolationMode | |
from torchvision.transforms.transforms import _interpolation_modes_from_int | |
from typing import Sequence | |
from MeshAnything.miche.michelangelo.utils import instantiate_from_config | |
def _uid_buffer_pick(buf_dict, rng): | |
uid_keys = list(buf_dict.keys()) | |
selected_uid = rng.choice(uid_keys) | |
buf = buf_dict[selected_uid] | |
k = rng.randint(0, len(buf) - 1) | |
sample = buf[k] | |
buf[k] = buf[-1] | |
buf.pop() | |
if len(buf) == 0: | |
del buf_dict[selected_uid] | |
return sample | |
def _add_to_buf_dict(buf_dict, sample): | |
key = sample["__key__"] | |
uid, uid_sample_id = key.split("_") | |
if uid not in buf_dict: | |
buf_dict[uid] = [] | |
buf_dict[uid].append(sample) | |
return buf_dict | |
def _uid_shuffle(data, bufsize=1000, initial=100, rng=None, handler=None): | |
"""Shuffle the data in the stream. | |
This uses a buffer of size `bufsize`. Shuffling at | |
startup is less random; this is traded off against | |
yielding samples quickly. | |
data: iterator | |
bufsize: buffer size for shuffling | |
returns: iterator | |
rng: either random module or random.Random instance | |
""" | |
if rng is None: | |
rng = random.Random(int((os.getpid() + time.time()) * 1e9)) | |
initial = min(initial, bufsize) | |
buf_dict = dict() | |
current_samples = 0 | |
for sample in data: | |
_add_to_buf_dict(buf_dict, sample) | |
current_samples += 1 | |
if current_samples < bufsize: | |
try: | |
_add_to_buf_dict(buf_dict, next(data)) # skipcq: PYL-R1708 | |
current_samples += 1 | |
except StopIteration: | |
pass | |
if current_samples >= initial: | |
current_samples -= 1 | |
yield _uid_buffer_pick(buf_dict, rng) | |
while current_samples > 0: | |
current_samples -= 1 | |
yield _uid_buffer_pick(buf_dict, rng) | |
uid_shuffle = pipelinefilter(_uid_shuffle) | |
class RandomSample(object): | |
def __init__(self, | |
num_volume_samples: int = 1024, | |
num_near_samples: int = 1024): | |
super().__init__() | |
self.num_volume_samples = num_volume_samples | |
self.num_near_samples = num_near_samples | |
def __call__(self, sample): | |
rng = np.random.default_rng() | |
# 1. sample surface input | |
total_surface = sample["surface"] | |
ind = rng.choice(total_surface.shape[0], replace=False) | |
surface = total_surface[ind] | |
# 2. sample volume/near geometric points | |
vol_points = sample["vol_points"] | |
vol_label = sample["vol_label"] | |
near_points = sample["near_points"] | |
near_label = sample["near_label"] | |
ind = rng.choice(vol_points.shape[0], self.num_volume_samples, replace=False) | |
vol_points = vol_points[ind] | |
vol_label = vol_label[ind] | |
vol_points_labels = np.concatenate([vol_points, vol_label[:, np.newaxis]], axis=1) | |
ind = rng.choice(near_points.shape[0], self.num_near_samples, replace=False) | |
near_points = near_points[ind] | |
near_label = near_label[ind] | |
near_points_labels = np.concatenate([near_points, near_label[:, np.newaxis]], axis=1) | |
# concat sampled volume and near points | |
geo_points = np.concatenate([vol_points_labels, near_points_labels], axis=0) | |
sample = { | |
"surface": surface, | |
"geo_points": geo_points | |
} | |
return sample | |
class SplitRandomSample(object): | |
def __init__(self, | |
use_surface_sample: bool = False, | |
num_surface_samples: int = 4096, | |
num_volume_samples: int = 1024, | |
num_near_samples: int = 1024): | |
super().__init__() | |
self.use_surface_sample = use_surface_sample | |
self.num_surface_samples = num_surface_samples | |
self.num_volume_samples = num_volume_samples | |
self.num_near_samples = num_near_samples | |
def __call__(self, sample): | |
rng = np.random.default_rng() | |
# 1. sample surface input | |
surface = sample["surface"] | |
if self.use_surface_sample: | |
replace = surface.shape[0] < self.num_surface_samples | |
ind = rng.choice(surface.shape[0], self.num_surface_samples, replace=replace) | |
surface = surface[ind] | |
# 2. sample volume/near geometric points | |
vol_points = sample["vol_points"] | |
vol_label = sample["vol_label"] | |
near_points = sample["near_points"] | |
near_label = sample["near_label"] | |
ind = rng.choice(vol_points.shape[0], self.num_volume_samples, replace=False) | |
vol_points = vol_points[ind] | |
vol_label = vol_label[ind] | |
vol_points_labels = np.concatenate([vol_points, vol_label[:, np.newaxis]], axis=1) | |
ind = rng.choice(near_points.shape[0], self.num_near_samples, replace=False) | |
near_points = near_points[ind] | |
near_label = near_label[ind] | |
near_points_labels = np.concatenate([near_points, near_label[:, np.newaxis]], axis=1) | |
# concat sampled volume and near points | |
geo_points = np.concatenate([vol_points_labels, near_points_labels], axis=0) | |
sample = { | |
"surface": surface, | |
"geo_points": geo_points | |
} | |
return sample | |
class FeatureSelection(object): | |
VALID_SURFACE_FEATURE_DIMS = { | |
"none": [0, 1, 2], # xyz | |
"watertight_normal": [0, 1, 2, 3, 4, 5], # xyz, normal | |
"normal": [0, 1, 2, 6, 7, 8] | |
} | |
def __init__(self, surface_feature_type: str): | |
self.surface_feature_type = surface_feature_type | |
self.surface_dims = self.VALID_SURFACE_FEATURE_DIMS[surface_feature_type] | |
def __call__(self, sample): | |
sample["surface"] = sample["surface"][:, self.surface_dims] | |
return sample | |
class AxisScaleTransform(object): | |
def __init__(self, interval=(0.75, 1.25), jitter=True, jitter_scale=0.005): | |
assert isinstance(interval, (tuple, list, ListConfig)) | |
self.interval = interval | |
self.min_val = interval[0] | |
self.max_val = interval[1] | |
self.inter_size = interval[1] - interval[0] | |
self.jitter = jitter | |
self.jitter_scale = jitter_scale | |
def __call__(self, sample): | |
surface = sample["surface"][..., 0:3] | |
geo_points = sample["geo_points"][..., 0:3] | |
scaling = torch.rand(1, 3) * self.inter_size + self.min_val | |
# print(scaling) | |
surface = surface * scaling | |
geo_points = geo_points * scaling | |
scale = (1 / torch.abs(surface).max().item()) * 0.999999 | |
surface *= scale | |
geo_points *= scale | |
if self.jitter: | |
surface += self.jitter_scale * torch.randn_like(surface) | |
surface.clamp_(min=-1.015, max=1.015) | |
sample["surface"][..., 0:3] = surface | |
sample["geo_points"][..., 0:3] = geo_points | |
return sample | |
class ToTensor(object): | |
def __init__(self, tensor_keys=("surface", "geo_points", "tex_points")): | |
self.tensor_keys = tensor_keys | |
def __call__(self, sample): | |
for key in self.tensor_keys: | |
if key not in sample: | |
continue | |
sample[key] = torch.tensor(sample[key], dtype=torch.float32) | |
return sample | |
class AxisScale(object): | |
def __init__(self, interval=(0.75, 1.25), jitter=True, jitter_scale=0.005): | |
assert isinstance(interval, (tuple, list, ListConfig)) | |
self.interval = interval | |
self.jitter = jitter | |
self.jitter_scale = jitter_scale | |
def __call__(self, surface, *args): | |
scaling = torch.rand(1, 3) * 0.5 + 0.75 | |
# print(scaling) | |
surface = surface * scaling | |
scale = (1 / torch.abs(surface).max().item()) * 0.999999 | |
surface *= scale | |
args_outputs = [] | |
for _arg in args: | |
_arg = _arg * scaling * scale | |
args_outputs.append(_arg) | |
if self.jitter: | |
surface += self.jitter_scale * torch.randn_like(surface) | |
surface.clamp_(min=-1, max=1) | |
if len(args) == 0: | |
return surface | |
else: | |
return surface, *args_outputs | |
class RandomResize(torch.nn.Module): | |
"""Apply randomly Resize with a given probability.""" | |
def __init__( | |
self, | |
size, | |
resize_radio=(0.5, 1), | |
allow_resize_interpolations=(InterpolationMode.BICUBIC, InterpolationMode.BILINEAR, InterpolationMode.BILINEAR), | |
interpolation=InterpolationMode.BICUBIC, | |
max_size=None, | |
antialias=None, | |
): | |
super().__init__() | |
if not isinstance(size, (int, Sequence)): | |
raise TypeError(f"Size should be int or sequence. Got {type(size)}") | |
if isinstance(size, Sequence) and len(size) not in (1, 2): | |
raise ValueError("If size is a sequence, it should have 1 or 2 values") | |
self.size = size | |
self.max_size = max_size | |
# Backward compatibility with integer value | |
if isinstance(interpolation, int): | |
warnings.warn( | |
"Argument 'interpolation' of type int is deprecated since 0.13 and will be removed in 0.15. " | |
"Please use InterpolationMode enum." | |
) | |
interpolation = _interpolation_modes_from_int(interpolation) | |
self.interpolation = interpolation | |
self.antialias = antialias | |
self.resize_radio = resize_radio | |
self.allow_resize_interpolations = allow_resize_interpolations | |
def random_resize_params(self): | |
radio = torch.rand(1) * (self.resize_radio[1] - self.resize_radio[0]) + self.resize_radio[0] | |
if isinstance(self.size, int): | |
size = int(self.size * radio) | |
elif isinstance(self.size, Sequence): | |
size = list(self.size) | |
size = (int(size[0] * radio), int(size[1] * radio)) | |
else: | |
raise RuntimeError() | |
interpolation = self.allow_resize_interpolations[ | |
torch.randint(low=0, high=len(self.allow_resize_interpolations), size=(1,)) | |
] | |
return size, interpolation | |
def forward(self, img): | |
size, interpolation = self.random_resize_params() | |
img = TVF.resize(img, size, interpolation, self.max_size, self.antialias) | |
img = TVF.resize(img, self.size, self.interpolation, self.max_size, self.antialias) | |
return img | |
def __repr__(self) -> str: | |
detail = f"(size={self.size}, interpolation={self.interpolation.value}," | |
detail += f"max_size={self.max_size}, antialias={self.antialias}), resize_radio={self.resize_radio}" | |
return f"{self.__class__.__name__}{detail}" | |
class Compose(object): | |
"""Composes several transforms together. This transform does not support torchscript. | |
Please, see the note below. | |
Args: | |
transforms (list of ``Transform`` objects): list of transforms to compose. | |
Example: | |
>>> transforms.Compose([ | |
>>> transforms.CenterCrop(10), | |
>>> transforms.ToTensor(), | |
>>> ]) | |
.. note:: | |
In order to script the transformations, please use ``torch.nn.Sequential`` as below. | |
>>> transforms = torch.nn.Sequential( | |
>>> transforms.CenterCrop(10), | |
>>> transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)), | |
>>> ) | |
>>> scripted_transforms = torch.jit.script(transforms) | |
Make sure to use only scriptable transformations, i.e. that work with ``torch.Tensor``, does not require | |
`lambda` functions or ``PIL.Image``. | |
""" | |
def __init__(self, transforms): | |
self.transforms = transforms | |
def __call__(self, *args): | |
for t in self.transforms: | |
args = t(*args) | |
return args | |
def __repr__(self): | |
format_string = self.__class__.__name__ + '(' | |
for t in self.transforms: | |
format_string += '\n' | |
format_string += ' {0}'.format(t) | |
format_string += '\n)' | |
return format_string | |
def identity(*args, **kwargs): | |
if len(args) == 1: | |
return args[0] | |
else: | |
return args | |
def build_transforms(cfg): | |
if cfg is None: | |
return identity | |
transforms = [] | |
for transform_name, cfg_instance in cfg.items(): | |
transform_instance = instantiate_from_config(cfg_instance) | |
transforms.append(transform_instance) | |
print(f"Build transform: {transform_instance}") | |
transforms = Compose(transforms) | |
return transforms | |