Spaces:
Running
on
Zero
Running
on
Zero
# Copyright 2024-2025 The Alibaba Wan Team Authors. All rights reserved. | |
import argparse | |
import binascii | |
import gc | |
import os | |
import os.path as osp | |
import cv2 | |
import imageio | |
import numpy as np | |
import torch | |
import torchvision | |
import inspect | |
from einops import rearrange | |
__all__ = ['cache_video', 'cache_image', 'str2bool'] | |
from PIL import Image | |
def filter_kwargs(cls, kwargs): | |
sig = inspect.signature(cls.__init__) | |
valid_params = set(sig.parameters.keys()) - {'self', 'cls'} | |
filtered_kwargs = {k: v for k, v in kwargs.items() if k in valid_params} | |
return filtered_kwargs | |
def rand_name(length=8, suffix=''): | |
name = binascii.b2a_hex(os.urandom(length)).decode('utf-8') | |
if suffix: | |
if not suffix.startswith('.'): | |
suffix = '.' + suffix | |
name += suffix | |
return name | |
def cache_video(tensor, | |
save_file=None, | |
fps=30, | |
suffix='.mp4', | |
nrow=8, | |
normalize=True, | |
value_range=(-1, 1), | |
retry=5): | |
# cache file | |
cache_file = osp.join('/tmp', rand_name( | |
suffix=suffix)) if save_file is None else save_file | |
# save to cache | |
error = None | |
for _ in range(retry): | |
try: | |
# preprocess | |
tensor = tensor.clamp(min(value_range), max(value_range)) | |
tensor = torch.stack([ | |
torchvision.utils.make_grid( | |
u, nrow=nrow, normalize=normalize, value_range=value_range) | |
for u in tensor.unbind(2) | |
], | |
dim=1).permute(1, 2, 3, 0) | |
tensor = (tensor * 255).type(torch.uint8).cpu() | |
# write video | |
writer = imageio.get_writer( | |
cache_file, fps=fps, codec='libx264', quality=8) | |
for frame in tensor.numpy(): | |
writer.append_data(frame) | |
writer.close() | |
return cache_file | |
except Exception as e: | |
error = e | |
continue | |
else: | |
print(f'cache_video failed, error: {error}', flush=True) | |
return None | |
def cache_image(tensor, | |
save_file, | |
nrow=8, | |
normalize=True, | |
value_range=(-1, 1), | |
retry=5): | |
# cache file | |
suffix = osp.splitext(save_file)[1] | |
if suffix.lower() not in [ | |
'.jpg', '.jpeg', '.png', '.tiff', '.gif', '.webp' | |
]: | |
suffix = '.png' | |
# save to cache | |
error = None | |
for _ in range(retry): | |
try: | |
tensor = tensor.clamp(min(value_range), max(value_range)) | |
torchvision.utils.save_image( | |
tensor, | |
save_file, | |
nrow=nrow, | |
normalize=normalize, | |
value_range=value_range) | |
return save_file | |
except Exception as e: | |
error = e | |
continue | |
def str2bool(v): | |
""" | |
Convert a string to a boolean. | |
Supported true values: 'yes', 'true', 't', 'y', '1' | |
Supported false values: 'no', 'false', 'f', 'n', '0' | |
Args: | |
v (str): String to convert. | |
Returns: | |
bool: Converted boolean value. | |
Raises: | |
argparse.ArgumentTypeError: If the value cannot be converted to boolean. | |
""" | |
if isinstance(v, bool): | |
return v | |
v_lower = v.lower() | |
if v_lower in ('yes', 'true', 't', 'y', '1'): | |
return True | |
elif v_lower in ('no', 'false', 'f', 'n', '0'): | |
return False | |
else: | |
raise argparse.ArgumentTypeError('Boolean value expected (True/False)') | |
def color_transfer(sc, dc): | |
""" | |
Transfer color distribution from of sc, referred to dc. | |
Args: | |
sc (numpy.ndarray): input image to be transfered. | |
dc (numpy.ndarray): reference image | |
Returns: | |
numpy.ndarray: Transferred color distribution on the sc. | |
""" | |
def get_mean_and_std(img): | |
x_mean, x_std = cv2.meanStdDev(img) | |
x_mean = np.hstack(np.around(x_mean, 2)) | |
x_std = np.hstack(np.around(x_std, 2)) | |
return x_mean, x_std | |
sc = cv2.cvtColor(sc, cv2.COLOR_RGB2LAB) | |
s_mean, s_std = get_mean_and_std(sc) | |
dc = cv2.cvtColor(dc, cv2.COLOR_RGB2LAB) | |
t_mean, t_std = get_mean_and_std(dc) | |
img_n = ((sc - s_mean) * (t_std / s_std)) + t_mean | |
np.putmask(img_n, img_n > 255, 255) | |
np.putmask(img_n, img_n < 0, 0) | |
dst = cv2.cvtColor(cv2.convertScaleAbs(img_n), cv2.COLOR_LAB2RGB) | |
return dst | |
def save_videos_grid(videos: torch.Tensor, path: str, rescale=False, n_rows=6, fps=12, imageio_backend=True, | |
color_transfer_post_process=False): | |
videos = rearrange(videos, "b c t h w -> t b c h w") | |
outputs = [] | |
for x in videos: | |
x = torchvision.utils.make_grid(x, nrow=n_rows) | |
x = x.transpose(0, 1).transpose(1, 2).squeeze(-1) | |
if rescale: | |
x = (x + 1.0) / 2.0 # -1,1 -> 0,1 | |
x = (x * 255).numpy().astype(np.uint8) | |
outputs.append(Image.fromarray(x)) | |
if color_transfer_post_process: | |
for i in range(1, len(outputs)): | |
outputs[i] = Image.fromarray(color_transfer(np.uint8(outputs[i]), np.uint8(outputs[0]))) | |
os.makedirs(os.path.dirname(path), exist_ok=True) | |
if imageio_backend: | |
if path.endswith("mp4"): | |
imageio.mimsave(path, outputs, fps=fps) | |
else: | |
imageio.mimsave(path, outputs, duration=(1000 * 1 / fps)) | |
else: | |
if path.endswith("mp4"): | |
path = path.replace('.mp4', '.gif') | |
outputs[0].save(path, format='GIF', append_images=outputs, save_all=True, duration=100, loop=0) | |
def get_image_to_video_latent(validation_image_start, validation_image_end, video_length, sample_size): | |
if validation_image_start is not None and validation_image_end is not None: | |
if type(validation_image_start) is str and os.path.isfile(validation_image_start): | |
image_start = clip_image = Image.open(validation_image_start).convert("RGB") | |
image_start = image_start.resize([sample_size[1], sample_size[0]]) | |
clip_image = clip_image.resize([sample_size[1], sample_size[0]]) | |
else: | |
image_start = clip_image = validation_image_start | |
image_start = [_image_start.resize([sample_size[1], sample_size[0]]) for _image_start in image_start] | |
clip_image = [_clip_image.resize([sample_size[1], sample_size[0]]) for _clip_image in clip_image] | |
if type(validation_image_end) is str and os.path.isfile(validation_image_end): | |
image_end = Image.open(validation_image_end).convert("RGB") | |
image_end = image_end.resize([sample_size[1], sample_size[0]]) | |
else: | |
image_end = validation_image_end | |
image_end = [_image_end.resize([sample_size[1], sample_size[0]]) for _image_end in image_end] | |
if type(image_start) is list: | |
clip_image = clip_image[0] | |
start_video = torch.cat( | |
[torch.from_numpy(np.array(_image_start)).permute(2, 0, 1).unsqueeze(1).unsqueeze(0) for _image_start in | |
image_start], | |
dim=2 | |
) | |
input_video = torch.tile(start_video[:, :, :1], [1, 1, video_length, 1, 1]) | |
input_video[:, :, :len(image_start)] = start_video | |
input_video_mask = torch.zeros_like(input_video[:, :1]) | |
input_video_mask[:, :, len(image_start):] = 255 | |
else: | |
input_video = torch.tile( | |
torch.from_numpy(np.array(image_start)).permute(2, 0, 1).unsqueeze(1).unsqueeze(0), | |
[1, 1, video_length, 1, 1] | |
) | |
input_video_mask = torch.zeros_like(input_video[:, :1]) | |
input_video_mask[:, :, 1:] = 255 | |
if type(image_end) is list: | |
image_end = [_image_end.resize(image_start[0].size if type(image_start) is list else image_start.size) for | |
_image_end in image_end] | |
end_video = torch.cat( | |
[torch.from_numpy(np.array(_image_end)).permute(2, 0, 1).unsqueeze(1).unsqueeze(0) for _image_end in | |
image_end], | |
dim=2 | |
) | |
input_video[:, :, -len(end_video):] = end_video | |
input_video_mask[:, :, -len(image_end):] = 0 | |
else: | |
image_end = image_end.resize(image_start[0].size if type(image_start) is list else image_start.size) | |
input_video[:, :, -1:] = torch.from_numpy(np.array(image_end)).permute(2, 0, 1).unsqueeze(1).unsqueeze(0) | |
input_video_mask[:, :, -1:] = 0 | |
input_video = input_video / 255 | |
elif validation_image_start is not None: | |
if type(validation_image_start) is str and os.path.isfile(validation_image_start): | |
image_start = clip_image = Image.open(validation_image_start).convert("RGB") | |
image_start = image_start.resize([sample_size[1], sample_size[0]]) | |
clip_image = clip_image.resize([sample_size[1], sample_size[0]]) | |
else: | |
image_start = clip_image = validation_image_start | |
image_start = [_image_start.resize([sample_size[1], sample_size[0]]) for _image_start in image_start] | |
clip_image = [_clip_image.resize([sample_size[1], sample_size[0]]) for _clip_image in clip_image] | |
image_end = None | |
if type(image_start) is list: | |
clip_image = clip_image[0] | |
start_video = torch.cat( | |
[torch.from_numpy(np.array(_image_start)).permute(2, 0, 1).unsqueeze(1).unsqueeze(0) for _image_start in | |
image_start], | |
dim=2 | |
) | |
input_video = torch.tile(start_video[:, :, :1], [1, 1, video_length, 1, 1]) | |
input_video[:, :, :len(image_start)] = start_video | |
input_video = input_video / 255 | |
input_video_mask = torch.zeros_like(input_video[:, :1]) | |
input_video_mask[:, :, len(image_start):] = 255 | |
else: | |
input_video = torch.tile( | |
torch.from_numpy(np.array(image_start)).permute(2, 0, 1).unsqueeze(1).unsqueeze(0), | |
[1, 1, video_length, 1, 1] | |
) / 255 | |
input_video_mask = torch.zeros_like(input_video[:, :1]) | |
input_video_mask[:, :, 1:, ] = 255 | |
else: | |
image_start = None | |
image_end = None | |
input_video = torch.zeros([1, 3, video_length, sample_size[0], sample_size[1]]) | |
input_video_mask = torch.ones([1, 1, video_length, sample_size[0], sample_size[1]]) * 255 | |
clip_image = None | |
del image_start | |
del image_end | |
gc.collect() | |
return input_video, input_video_mask, clip_image |