YingxuHe commited on
Commit
c9f0a44
1 Parent(s): 2b4da4f

update code

Browse files
Files changed (2) hide show
  1. app.py +33 -40
  2. requirements.txt +3 -0
app.py CHANGED
@@ -2,42 +2,43 @@ import gradio as gr
2
  import os
3
  import time
4
 
5
- from langchain.document_loaders import UnstructuredMarkdownLoader
 
 
 
6
 
7
- from langchain.text_splitter import CharacterTextSplitter
 
 
 
 
8
 
9
- from langchain.llms import OpenAI
10
 
11
- from langchain.embeddings import OpenAIEmbeddings
12
 
 
 
 
 
13
 
14
- from langchain.vectorstores import Chroma
15
-
16
- from langchain.chains import ConversationalRetrievalChain
17
- from langchain.prompts.prompt import PromptTemplate
 
18
 
19
- os.environ['OPENAI_API_KEY'] = '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'
20
 
21
- _template = """Assume you are He Yingxu, please complete the following conversations:
22
- Chat History:
23
- {chat_history}
24
- Follow Up Input: {question}
25
- """
 
26
 
27
- CUSTOM_QUESTION_PROMPT = PromptTemplate.from_template(_template)
28
-
29
- loader = UnstructuredMarkdownLoader('docs/resume.md')
30
- documents = loader.load()
31
- text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
32
- texts = text_splitter.split_documents(documents)
33
- embeddings = OpenAIEmbeddings()
34
- db = Chroma.from_documents(texts, embeddings)
35
- retriever = db.as_retriever()
36
- qa = ConversationalRetrievalChain.from_llm(
37
- llm=OpenAI(temperature=0.3),
38
- retriever=retriever,
39
- condense_question_prompt=CUSTOM_QUESTION_PROMPT,
40
- return_source_documents=False)
41
 
42
 
43
  def add_text(history, text):
@@ -47,7 +48,7 @@ def add_text(history, text):
47
 
48
  def bot(history):
49
  print(history)
50
- response = infer(history[-1][0], history)
51
  history[-1][1] = ""
52
 
53
  for character in response:
@@ -56,19 +57,11 @@ def bot(history):
56
  yield history
57
 
58
 
59
- def infer(question, history):
60
-
61
- res = []
62
- for human, ai in history[:-1]:
63
- pair = (human, ai)
64
- res.append(pair)
65
 
66
- chat_history = res
67
- #print(chat_history)
68
- query = question
69
- result = qa({"question": query, "chat_history": chat_history})
70
  #print(result)
71
- return result["answer"]
72
 
73
 
74
  css = """
 
2
  import os
3
  import time
4
 
5
+ from langchain.chains import LLMChain
6
+ from langchain.memory import ConversationBufferMemory
7
+ from langchain_community.llms import LlamaCpp
8
+ from langchain_experimental.chat_models import Llama2Chat
9
 
10
+ from langchain.prompts.chat import (
11
+ ChatPromptTemplate,
12
+ HumanMessagePromptTemplate,
13
+ MessagesPlaceholder,
14
+ )
15
 
16
+ from langchain.schema import SystemMessage
17
 
18
+ import urllib
19
 
20
+ urllib.request.urlretrieve(
21
+ "https://huggingface.co/hfl/chinese-alpaca-2-7b-rlhf-gguf/resolve/main/ggml-model-q6_k.gguf?download=true",
22
+ "ggml-model-q6_k.gguf"
23
+ )
24
 
25
+ template_messages = [
26
+ SystemMessage(content="你是一名软件工程师,你的名字叫做贺英旭。请你以这个身份回答以下问题!"),
27
+ MessagesPlaceholder(variable_name="chat_history"),
28
+ HumanMessagePromptTemplate.from_template("{text}"),
29
+ ]
30
 
31
+ prompt_template = ChatPromptTemplate.from_messages(template_messages)
32
 
33
+ llm = LlamaCpp(
34
+ model_path="ggml-model-q6_k.gguf",
35
+ temperature=0.75,
36
+ max_tokens=64
37
+ )
38
+ model = Llama2Chat(llm=llm)
39
 
40
+ memory = ConversationBufferMemory(memory_key="chat_history", return_messages=True)
41
+ chain = LLMChain(llm=model, prompt=prompt_template, memory=memory)
 
 
 
 
 
 
 
 
 
 
 
 
42
 
43
 
44
  def add_text(history, text):
 
48
 
49
  def bot(history):
50
  print(history)
51
+ response = infer(history[-1][0])
52
  history[-1][1] = ""
53
 
54
  for character in response:
 
57
  yield history
58
 
59
 
60
+ def infer(question):
 
 
 
 
 
61
 
62
+ result = chain.run(text=question).strip()
 
 
 
63
  #print(result)
64
+ return result
65
 
66
 
67
  css = """
requirements.txt CHANGED
@@ -1,7 +1,10 @@
1
  openai
 
2
  tiktoken
3
  chromadb
4
  pypdf
5
  langchain
 
 
6
  unstructured
7
  unstructured[local-inference]
 
1
  openai
2
+ urllib
3
  tiktoken
4
  chromadb
5
  pypdf
6
  langchain
7
+ langchain_community
8
+ langchain_experimental
9
  unstructured
10
  unstructured[local-inference]