Update app.py
Browse files
app.py
CHANGED
@@ -6,13 +6,10 @@ import soundfile as sf
|
|
6 |
import tempfile
|
7 |
import os
|
8 |
|
9 |
-
from transformers import
|
10 |
-
|
11 |
-
VitsModel,
|
12 |
-
AutoTokenizer
|
13 |
-
)
|
14 |
|
15 |
-
# For Coqui TTS
|
16 |
try:
|
17 |
from TTS.api import TTS as CoquiTTS
|
18 |
except ImportError:
|
@@ -27,52 +24,63 @@ asr = pipeline(
|
|
27 |
)
|
28 |
|
29 |
# ------------------------------------------------------
|
30 |
-
# 2. Translation Models (
|
31 |
# ------------------------------------------------------
|
32 |
translation_models = {
|
33 |
"Spanish": "Helsinki-NLP/opus-mt-en-es",
|
|
|
|
|
|
|
|
|
|
|
34 |
"Chinese": "Helsinki-NLP/opus-mt-en-zh",
|
35 |
"Japanese": "Helsinki-NLP/opus-mt-en-ja"
|
36 |
}
|
37 |
|
38 |
translation_tasks = {
|
39 |
"Spanish": "translation_en_to_es",
|
|
|
|
|
|
|
|
|
|
|
40 |
"Chinese": "translation_en_to_zh",
|
41 |
"Japanese": "translation_en_to_ja"
|
42 |
}
|
43 |
|
44 |
# ------------------------------------------------------
|
45 |
-
# 3. TTS
|
46 |
-
# -
|
47 |
-
# -
|
48 |
# ------------------------------------------------------
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
"model_id": "facebook/mms-tts-
|
56 |
-
"
|
|
|
57 |
}
|
58 |
|
59 |
-
#
|
60 |
coqui_lang_map = {
|
61 |
-
|
62 |
-
|
63 |
}
|
64 |
|
65 |
# ------------------------------------------------------
|
66 |
-
# 4. Global Caches
|
67 |
# ------------------------------------------------------
|
68 |
translator_cache = {}
|
69 |
-
|
70 |
-
coqui_tts_cache = None
|
71 |
|
|
|
|
|
|
|
72 |
def get_translator(lang):
|
73 |
-
"""
|
74 |
-
Return a cached MarianMT translator for the specified language.
|
75 |
-
"""
|
76 |
if lang in translator_cache:
|
77 |
return translator_cache[lang]
|
78 |
model_name = translation_models[lang]
|
@@ -82,124 +90,90 @@ def get_translator(lang):
|
|
82 |
return translator
|
83 |
|
84 |
# ------------------------------------------------------
|
85 |
-
#
|
86 |
# ------------------------------------------------------
|
87 |
-
def
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
global spanish_vits_cache
|
92 |
-
if spanish_vits_cache is not None:
|
93 |
-
return spanish_vits_cache
|
94 |
-
|
95 |
try:
|
96 |
-
model = VitsModel.from_pretrained(
|
97 |
-
tokenizer = AutoTokenizer.from_pretrained(
|
98 |
-
|
99 |
except Exception as e:
|
100 |
-
raise RuntimeError(f"Failed to load
|
101 |
-
|
102 |
-
return spanish_vits_cache
|
103 |
|
104 |
-
def
|
105 |
-
|
106 |
-
Run MMS TTS (VITS) for Spanish text.
|
107 |
-
Returns (sample_rate, waveform).
|
108 |
-
"""
|
109 |
-
model, tokenizer = load_spanish_vits()
|
110 |
inputs = tokenizer(text, return_tensors="pt")
|
111 |
with torch.no_grad():
|
112 |
output = model(**inputs)
|
113 |
if not hasattr(output, "waveform"):
|
114 |
-
raise RuntimeError("
|
115 |
waveform = output.waveform.squeeze().cpu().numpy()
|
116 |
sample_rate = 16000
|
117 |
return sample_rate, waveform
|
118 |
|
119 |
# ------------------------------------------------------
|
120 |
-
#
|
121 |
# ------------------------------------------------------
|
122 |
def load_coqui_tts():
|
123 |
-
"""
|
124 |
-
Load and cache the Coqui XTTS-v2 model (multilingual).
|
125 |
-
"""
|
126 |
global coqui_tts_cache
|
127 |
if coqui_tts_cache is not None:
|
128 |
return coqui_tts_cache
|
129 |
-
|
130 |
try:
|
131 |
-
#
|
132 |
-
# If not, set gpu=False to run on CPU (slower).
|
133 |
coqui_tts_cache = CoquiTTS("tts_models/multilingual/multi-dataset/xtts_v2", gpu=False)
|
134 |
except Exception as e:
|
135 |
-
raise RuntimeError("Failed to load Coqui XTTS-v2 TTS:
|
136 |
-
|
137 |
return coqui_tts_cache
|
138 |
|
139 |
def run_coqui_tts(text, lang):
|
140 |
-
"""
|
141 |
-
Run Coqui TTS for Chinese or Japanese text.
|
142 |
-
We specify the language code from coqui_lang_map.
|
143 |
-
Returns (sample_rate, waveform).
|
144 |
-
"""
|
145 |
coqui_tts = load_coqui_tts()
|
146 |
-
lang_code = coqui_lang_map[lang] # "zh" or "ja"
|
147 |
-
|
148 |
-
# We must output to a file, then read it back.
|
149 |
-
# Use a temporary file to store the wave.
|
150 |
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as tmp:
|
151 |
tmp_name = tmp.name
|
152 |
-
|
153 |
try:
|
154 |
coqui_tts.tts_to_file(
|
155 |
text=text,
|
156 |
file_path=tmp_name,
|
157 |
-
language=lang_code #
|
158 |
)
|
159 |
data, sr = sf.read(tmp_name)
|
160 |
finally:
|
161 |
-
# Cleanup the temporary file
|
162 |
if os.path.exists(tmp_name):
|
163 |
os.remove(tmp_name)
|
164 |
-
|
165 |
return sr, data
|
166 |
|
167 |
# ------------------------------------------------------
|
168 |
-
#
|
169 |
# ------------------------------------------------------
|
170 |
def predict(audio, text, target_language):
|
171 |
"""
|
172 |
-
1.
|
173 |
-
2. Translate to target_language.
|
174 |
-
3. TTS
|
175 |
-
- Spanish -> MMS TTS (VITS)
|
176 |
-
- Chinese/Japanese -> Coqui XTTS-v2
|
177 |
"""
|
178 |
-
# Step 1: English text
|
179 |
if text.strip():
|
180 |
english_text = text.strip()
|
181 |
elif audio is not None:
|
182 |
sample_rate, audio_data = audio
|
183 |
-
|
184 |
-
# Convert to float32 if needed
|
185 |
if audio_data.dtype not in [np.float32, np.float64]:
|
186 |
audio_data = audio_data.astype(np.float32)
|
187 |
-
|
188 |
-
# Stereo -> mono
|
189 |
if len(audio_data.shape) > 1 and audio_data.shape[1] > 1:
|
190 |
audio_data = np.mean(audio_data, axis=1)
|
191 |
-
|
192 |
-
# Resample to 16k if needed
|
193 |
if sample_rate != 16000:
|
194 |
audio_data = librosa.resample(audio_data, orig_sr=sample_rate, target_sr=16000)
|
195 |
-
|
196 |
asr_input = {"array": audio_data, "sampling_rate": 16000}
|
197 |
asr_result = asr(asr_input)
|
198 |
english_text = asr_result["text"]
|
199 |
else:
|
200 |
return "No input provided.", "", None
|
201 |
|
202 |
-
# Step 2: Translate
|
203 |
translator = get_translator(target_language)
|
204 |
try:
|
205 |
translation_result = translator(english_text)
|
@@ -207,27 +181,33 @@ def predict(audio, text, target_language):
|
|
207 |
except Exception as e:
|
208 |
return english_text, f"Translation error: {e}", None
|
209 |
|
210 |
-
# Step 3: TTS
|
211 |
try:
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
-
|
216 |
sr, waveform = run_coqui_tts(translated_text, target_language)
|
|
|
|
|
217 |
except Exception as e:
|
218 |
return english_text, translated_text, f"TTS error: {e}"
|
219 |
|
220 |
return english_text, translated_text, (sr, waveform)
|
221 |
|
222 |
# ------------------------------------------------------
|
223 |
-
#
|
224 |
# ------------------------------------------------------
|
|
|
|
|
|
|
|
|
225 |
iface = gr.Interface(
|
226 |
fn=predict,
|
227 |
inputs=[
|
228 |
gr.Audio(type="numpy", label="Record/Upload English Audio (optional)"),
|
229 |
gr.Textbox(lines=4, placeholder="Or enter English text here", label="English Text Input (optional)"),
|
230 |
-
gr.Dropdown(choices=
|
231 |
],
|
232 |
outputs=[
|
233 |
gr.Textbox(label="English Transcription"),
|
@@ -236,13 +216,14 @@ iface = gr.Interface(
|
|
236 |
],
|
237 |
title="Multimodal Language Learning Aid",
|
238 |
description=(
|
239 |
-
"
|
240 |
-
"
|
|
|
241 |
"3. Synthesizes speech:\n"
|
242 |
-
" - Spanish
|
243 |
-
"
|
244 |
-
"
|
245 |
-
"
|
246 |
),
|
247 |
allow_flagging="never"
|
248 |
)
|
|
|
6 |
import tempfile
|
7 |
import os
|
8 |
|
9 |
+
from transformers import pipeline, VitsModel, AutoTokenizer
|
10 |
+
from datasets import load_dataset
|
|
|
|
|
|
|
11 |
|
12 |
+
# For Coqui TTS (XTTS-v2)
|
13 |
try:
|
14 |
from TTS.api import TTS as CoquiTTS
|
15 |
except ImportError:
|
|
|
24 |
)
|
25 |
|
26 |
# ------------------------------------------------------
|
27 |
+
# 2. Translation Models (8 languages)
|
28 |
# ------------------------------------------------------
|
29 |
translation_models = {
|
30 |
"Spanish": "Helsinki-NLP/opus-mt-en-es",
|
31 |
+
"Vietnamese": "Helsinki-NLP/opus-mt-en-vi",
|
32 |
+
"Indonesian": "Helsinki-NLP/opus-mt-en-id",
|
33 |
+
"Turkish": "Helsinki-NLP/opus-mt-en-tr",
|
34 |
+
"Portuguese": "Helsinki-NLP/opus-mt-en-pt",
|
35 |
+
"Korean": "Helsinki-NLP/opus-mt-en-ko",
|
36 |
"Chinese": "Helsinki-NLP/opus-mt-en-zh",
|
37 |
"Japanese": "Helsinki-NLP/opus-mt-en-ja"
|
38 |
}
|
39 |
|
40 |
translation_tasks = {
|
41 |
"Spanish": "translation_en_to_es",
|
42 |
+
"Vietnamese": "translation_en_to_vi",
|
43 |
+
"Indonesian": "translation_en_to_id",
|
44 |
+
"Turkish": "translation_en_to_tr",
|
45 |
+
"Portuguese": "translation_en_to_pt",
|
46 |
+
"Korean": "translation_en_to-ko",
|
47 |
"Chinese": "translation_en_to_zh",
|
48 |
"Japanese": "translation_en_to_ja"
|
49 |
}
|
50 |
|
51 |
# ------------------------------------------------------
|
52 |
+
# 3. TTS Configuration
|
53 |
+
# - MMS TTS (VITS) for: Spanish, Vietnamese, Indonesian, Turkish, Portuguese, Korean
|
54 |
+
# - Coqui XTTS-v2 for: Chinese and Japanese
|
55 |
# ------------------------------------------------------
|
56 |
+
tts_config = {
|
57 |
+
"Spanish": {"model_id": "facebook/mms-tts-spa", "architecture": "vits", "type": "mms"},
|
58 |
+
"Vietnamese": {"model_id": "facebook/mms-tts-vie", "architecture": "vits", "type": "mms"},
|
59 |
+
"Indonesian": {"model_id": "facebook/mms-tts-ind", "architecture": "vits", "type": "mms"},
|
60 |
+
"Turkish": {"model_id": "facebook/mms-tts-tur", "architecture": "vits", "type": "mms"},
|
61 |
+
"Portuguese": {"model_id": "facebook/mms-tts-por", "architecture": "vits", "type": "mms"},
|
62 |
+
"Korean": {"model_id": "facebook/mms-tts-kor", "architecture": "vits", "type": "mms"},
|
63 |
+
"Chinese": {"type": "coqui"},
|
64 |
+
"Japanese": {"type": "coqui"}
|
65 |
}
|
66 |
|
67 |
+
# For Coqui, we map our languages to language codes expected by the model.
|
68 |
coqui_lang_map = {
|
69 |
+
"Chinese": "zh",
|
70 |
+
"Japanese": "ja"
|
71 |
}
|
72 |
|
73 |
# ------------------------------------------------------
|
74 |
+
# 4. Global Caches for Translators and TTS Models
|
75 |
# ------------------------------------------------------
|
76 |
translator_cache = {}
|
77 |
+
mms_tts_cache = {} # For MMS (VITS-based) TTS models
|
78 |
+
coqui_tts_cache = None # Single instance for Coqui XTTS-v2
|
79 |
|
80 |
+
# ------------------------------------------------------
|
81 |
+
# 5. Translator Helper
|
82 |
+
# ------------------------------------------------------
|
83 |
def get_translator(lang):
|
|
|
|
|
|
|
84 |
if lang in translator_cache:
|
85 |
return translator_cache[lang]
|
86 |
model_name = translation_models[lang]
|
|
|
90 |
return translator
|
91 |
|
92 |
# ------------------------------------------------------
|
93 |
+
# 6. MMS TTS (VITS) Helper for languages using MMS TTS
|
94 |
# ------------------------------------------------------
|
95 |
+
def load_mms_tts(lang):
|
96 |
+
if lang in mms_tts_cache:
|
97 |
+
return mms_tts_cache[lang]
|
98 |
+
config = tts_config[lang]
|
|
|
|
|
|
|
|
|
99 |
try:
|
100 |
+
model = VitsModel.from_pretrained(config["model_id"])
|
101 |
+
tokenizer = AutoTokenizer.from_pretrained(config["model_id"])
|
102 |
+
mms_tts_cache[lang] = (model, tokenizer)
|
103 |
except Exception as e:
|
104 |
+
raise RuntimeError(f"Failed to load MMS TTS model for {lang} ({config['model_id']}): {e}")
|
105 |
+
return mms_tts_cache[lang]
|
|
|
106 |
|
107 |
+
def run_mms_tts(text, lang):
|
108 |
+
model, tokenizer = load_mms_tts(lang)
|
|
|
|
|
|
|
|
|
109 |
inputs = tokenizer(text, return_tensors="pt")
|
110 |
with torch.no_grad():
|
111 |
output = model(**inputs)
|
112 |
if not hasattr(output, "waveform"):
|
113 |
+
raise RuntimeError(f"MMS TTS model output for {lang} does not contain 'waveform'.")
|
114 |
waveform = output.waveform.squeeze().cpu().numpy()
|
115 |
sample_rate = 16000
|
116 |
return sample_rate, waveform
|
117 |
|
118 |
# ------------------------------------------------------
|
119 |
+
# 7. Coqui TTS Helper for Chinese and Japanese
|
120 |
# ------------------------------------------------------
|
121 |
def load_coqui_tts():
|
|
|
|
|
|
|
122 |
global coqui_tts_cache
|
123 |
if coqui_tts_cache is not None:
|
124 |
return coqui_tts_cache
|
|
|
125 |
try:
|
126 |
+
# Set gpu=True if a GPU is available.
|
|
|
127 |
coqui_tts_cache = CoquiTTS("tts_models/multilingual/multi-dataset/xtts_v2", gpu=False)
|
128 |
except Exception as e:
|
129 |
+
raise RuntimeError(f"Failed to load Coqui XTTS-v2 TTS: {e}")
|
|
|
130 |
return coqui_tts_cache
|
131 |
|
132 |
def run_coqui_tts(text, lang):
|
|
|
|
|
|
|
|
|
|
|
133 |
coqui_tts = load_coqui_tts()
|
134 |
+
lang_code = coqui_lang_map[lang] # "zh" for Chinese or "ja" for Japanese
|
135 |
+
# Write the output to a temporary file and then read it back.
|
|
|
|
|
136 |
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as tmp:
|
137 |
tmp_name = tmp.name
|
|
|
138 |
try:
|
139 |
coqui_tts.tts_to_file(
|
140 |
text=text,
|
141 |
file_path=tmp_name,
|
142 |
+
language=lang_code # using default voice; for cloning, add speaker_wav parameter
|
143 |
)
|
144 |
data, sr = sf.read(tmp_name)
|
145 |
finally:
|
|
|
146 |
if os.path.exists(tmp_name):
|
147 |
os.remove(tmp_name)
|
|
|
148 |
return sr, data
|
149 |
|
150 |
# ------------------------------------------------------
|
151 |
+
# 8. Main Prediction Function
|
152 |
# ------------------------------------------------------
|
153 |
def predict(audio, text, target_language):
|
154 |
"""
|
155 |
+
1. Obtain English text (via ASR if audio provided, else text).
|
156 |
+
2. Translate English text to target_language.
|
157 |
+
3. Generate TTS audio using either MMS TTS (VITS) or Coqui XTTS-v2.
|
|
|
|
|
158 |
"""
|
159 |
+
# Step 1: Get English text.
|
160 |
if text.strip():
|
161 |
english_text = text.strip()
|
162 |
elif audio is not None:
|
163 |
sample_rate, audio_data = audio
|
|
|
|
|
164 |
if audio_data.dtype not in [np.float32, np.float64]:
|
165 |
audio_data = audio_data.astype(np.float32)
|
|
|
|
|
166 |
if len(audio_data.shape) > 1 and audio_data.shape[1] > 1:
|
167 |
audio_data = np.mean(audio_data, axis=1)
|
|
|
|
|
168 |
if sample_rate != 16000:
|
169 |
audio_data = librosa.resample(audio_data, orig_sr=sample_rate, target_sr=16000)
|
|
|
170 |
asr_input = {"array": audio_data, "sampling_rate": 16000}
|
171 |
asr_result = asr(asr_input)
|
172 |
english_text = asr_result["text"]
|
173 |
else:
|
174 |
return "No input provided.", "", None
|
175 |
|
176 |
+
# Step 2: Translate.
|
177 |
translator = get_translator(target_language)
|
178 |
try:
|
179 |
translation_result = translator(english_text)
|
|
|
181 |
except Exception as e:
|
182 |
return english_text, f"Translation error: {e}", None
|
183 |
|
184 |
+
# Step 3: TTS.
|
185 |
try:
|
186 |
+
tts_type = tts_config[target_language]["type"]
|
187 |
+
if tts_type == "mms":
|
188 |
+
sr, waveform = run_mms_tts(translated_text, target_language)
|
189 |
+
elif tts_type == "coqui":
|
190 |
sr, waveform = run_coqui_tts(translated_text, target_language)
|
191 |
+
else:
|
192 |
+
raise RuntimeError("Unknown TTS type for target language.")
|
193 |
except Exception as e:
|
194 |
return english_text, translated_text, f"TTS error: {e}"
|
195 |
|
196 |
return english_text, translated_text, (sr, waveform)
|
197 |
|
198 |
# ------------------------------------------------------
|
199 |
+
# 9. Gradio Interface
|
200 |
# ------------------------------------------------------
|
201 |
+
language_choices = [
|
202 |
+
"Spanish", "Vietnamese", "Indonesian", "Turkish", "Portuguese", "Korean", "Chinese", "Japanese"
|
203 |
+
]
|
204 |
+
|
205 |
iface = gr.Interface(
|
206 |
fn=predict,
|
207 |
inputs=[
|
208 |
gr.Audio(type="numpy", label="Record/Upload English Audio (optional)"),
|
209 |
gr.Textbox(lines=4, placeholder="Or enter English text here", label="English Text Input (optional)"),
|
210 |
+
gr.Dropdown(choices=language_choices, value="Spanish", label="Target Language")
|
211 |
],
|
212 |
outputs=[
|
213 |
gr.Textbox(label="English Transcription"),
|
|
|
216 |
],
|
217 |
title="Multimodal Language Learning Aid",
|
218 |
description=(
|
219 |
+
"This app performs the following steps:\n"
|
220 |
+
"1. Transcribes English speech using Wav2Vec2 (or accepts text input).\n"
|
221 |
+
"2. Translates the English text to the target language using Helsinki-NLP MarianMT models.\n"
|
222 |
"3. Synthesizes speech:\n"
|
223 |
+
" - For Spanish, Vietnamese, Indonesian, Turkish, Portuguese, and Korean: "
|
224 |
+
"uses Facebook MMS TTS (VITS-based).\n"
|
225 |
+
" - For Chinese and Japanese: uses Coqui XTTS-v2.\n"
|
226 |
+
"\nSelect your target language from the dropdown."
|
227 |
),
|
228 |
allow_flagging="never"
|
229 |
)
|