yiyixuxu
testing
f238f1a
raw
history blame
6.5 kB
import torch
import clip
import cv2, youtube_dl
from PIL import Image,ImageDraw, ImageFont
import os
from functools import partial
from multiprocessing.pool import Pool
import shutil
from pathlib import Path
import numpy as np
import datetime
import gradio as gr
# load model and preprocess
device = "cuda" if torch.cuda.is_available() else "cpu"
model, preprocess = clip.load("ViT-B/32")
def select_video_format(url, format_note='480p', ext='mp4'):
defaults = ['480p', '360p','240p','144p']
ydl_opts = {}
ydl = youtube_dl.YoutubeDL(ydl_opts)
info_dict = ydl.extract_info(url, download=False)
formats = info_dict.get('formats', None)
available_format_notes = set([f['format_note'] for f in formats])
if format_note not in available_format_notes:
format_note = [d for d in defaults if d in available_format_notes][0]
formats = [f for f in formats if f['format_note'] == format_note and f['ext'] == ext]
format = formats[0]
format_id = format.get('format_id', None)
fps = format.get('fps', None)
print(f'format selected: {format}')
return(format_id, fps)
def download_video(url,format_id):
ydl_opts = {
'format':format_id,
'outtmpl': "%(id)s.%(ext)s"}
meta = youtube_dl.YoutubeDL(ydl_opts).extract_info(url)
save_location = meta['id'] + '.' + meta['ext']
return(save_location)
def read_frames(dest_path):
original_images = []
images = []
for filename in sorted(dest_path.glob('*.jpg'),key=lambda p: int(p.stem)):
image = Image.open(filename).convert("RGB")
original_images.append(image)
images.append(preprocess(image))
return original_images, images
def process_video_parallel(video, skip_frames, dest_path, num_processes, process_number):
cap = cv2.VideoCapture(video)
chunks_per_process = int(cap.get(cv2.CAP_PROP_FRAME_COUNT)) // (num_processes * skip_frames)
count = skip_frames * chunks_per_process * process_number
print(f"worker: {process_number}, process frames {count} ~ {skip_frames * chunks_per_process * (process_number + 1)} \n total number of frames: {cap.get(cv2.CAP_PROP_FRAME_COUNT)} \n video: {video}; isOpen? : {cap.isOpened()}")
while count < skip_frames * chunks_per_process * (process_number + 1) :
cap.set(cv2.CAP_PROP_POS_FRAMES, count)
ret, frame = cap.read()
if not ret:
break
filename =f"{dest_path}/{count}.jpg"
cv2.imwrite(filename, frame)
print(f"saved {filename}")
count += skip_frames # Skip 300 frames i.e. 10 seconds for 30 fps
cap.release()
def vid2frames(url, sampling_interval=1, ext='mp4'):
# create folder for extracted frames - if folder exists, delete and create a new one
dest_path = Path('frames')
try:
dest_path.mkdir(parents=True)
except FileExistsError:
shutil.rmtree(dest_path)
dest_path.mkdir(parents=True)
# figure out the format for download,
# by default select 480p, if not available, choose the best format available
# mp4
format_id, fps = select_video_format(url, format_note='480p', ext='mp4')
# download the video
video = download_video(url,format_id)
# calculate skip_frames
try:
skip_frames = int(fps * sampling_interval)
except:
skip_frames = int(30 * sampling_interval)
print(f'video saved at: {video}, fps:{fps}, skip_frames: {skip_frames}')
# extract video frames at given sampling interval with multiprocessing -
print('extracting frames...')
n_workers = min(os.cpu_count(), 1)
# testing..
cap = cv2.VideoCapture(video)
print(f'video: {video}; isOpen? : {cap.isOpened()}')
print(f'n_workers: {n_workers}')
with Pool(n_workers) as pool:
pool.map(partial(process_video_parallel, video, skip_frames, dest_path, n_workers), range(n_workers))
return dest_path
def captioned_strip(images, caption=None, times=None, rows=1):
increased_h = 0 if caption is None else 30
w, h = images[0].size[0], images[0].size[1]
img = Image.new("RGB", (len(images) * w // rows, h * rows + increased_h))
for i, img_ in enumerate(images):
img.paste(img_, (i // rows * w, increased_h + (i % rows) * h))
if caption is not None:
draw = ImageDraw.Draw(img)
font = ImageFont.truetype(
"/usr/share/fonts/truetype/liberation2/LiberationMono-Bold.ttf", 16
)
font_small = ImageFont.truetype(
"/usr/share/fonts/truetype/liberation2/LiberationMono-Bold.ttf", 12
)
draw.text((20, 3), caption, (255, 255, 255), font=font)
for i,ts in enumerate(times):
draw.text((
(i % rows) * w + 40 , #column poistion
i // rows * h + 33) # row position
, ts,
(255, 255, 255), font=font_small)
return img
def run_inference(url, sampling_interval, search_query):
path_frames = vid2frames(url,sampling_interval)
original_images, images = read_frames(path_frames)
image_input = torch.tensor(np.stack(images)).to(device)
with torch.no_grad():
image_features = model.encode_image(image_input)
text_features = model.encode_text(clip.tokenize(search_query).to(device))
image_features /= image_features.norm(dim=-1, keepdim=True)
text_features /= text_features.norm(dim=-1, keepdim=True)
similarity = (100.0 * image_features @ text_features.T)
values, indices = similarity.topk(4, dim=0)
best_frames = [original_images[ind] for ind in indices]
times = [f'{datetime.timedelta(seconds = ind[0].item() * sampling_interval)}' for ind in indices]
image_output = captioned_strip(best_frames,search_query, times,2)
title = search_query
return(title, image_output)
inputs = [gr.inputs.Textbox(label="Give us the link to your youtube video!"),
gr.Number(5,label='sampling interval (seconds)'),
gr.inputs.Textbox(label="What do you want to search?")]
outputs = [
gr.outputs.HTML(label=""), # To be used as title
gr.outputs.Image(label=""),
]
gr.Interface(
run_inference,
inputs=inputs,
outputs=outputs,
title="It Happened One Frame",
description='A CLIP-based app that search video frame based on text',
examples=[
['https://youtu.be/v1rkzUIL8oc', 1, "James Cagney dancing down the stairs"],
['https://youtu.be/k4R5wZs8cxI', 1, "James Cagney smashes a grapefruit into Mae Clarke's face"]
]
).launch(debug=True,enable_queue=True)