Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -77,7 +77,7 @@ def detect_audio_language(audio_path):
|
|
77 |
language = detect(f.read())
|
78 |
os.remove(temp_filepath)
|
79 |
return language
|
80 |
-
except:
|
81 |
return None
|
82 |
|
83 |
def split_text_into_chunks(text, max_chunk_length=200):
|
@@ -121,12 +121,11 @@ async def generate_music_with_voice(description, melody_audio, voice_audio, dura
|
|
121 |
|
122 |
music_filename = await save_audio_to_storage(wav_music[0].cpu(), "music_" + str(uuid.uuid4()) + ".wav")
|
123 |
|
124 |
-
|
125 |
if language not in supported_languages:
|
126 |
raise ValueError(f"Language {language} not supported")
|
127 |
|
128 |
if not text_prompt and not voice_audio:
|
129 |
-
|
130 |
|
131 |
if text_prompt and len(text_prompt) > 1000:
|
132 |
raise ValueError("Text prompt is too long, please keep it under 1000 characters")
|
@@ -177,7 +176,8 @@ async def generate_music_with_voice(description, melody_audio, voice_audio, dura
|
|
177 |
|
178 |
return music_filename, voice_filename
|
179 |
|
180 |
-
|
|
|
181 |
except Exception as e:
|
182 |
return str(e), str(e)
|
183 |
|
@@ -202,81 +202,19 @@ iface = gr.Interface(
|
|
202 |
|
203 |
iface.launch(share=True)
|
204 |
|
205 |
-
|
206 |
app = FastAPI()
|
207 |
|
208 |
@app.post("/synthesize")
|
209 |
async def api_synthesize(prompt: str, language: str = "en", audio_file: UploadFile = File(...)):
|
210 |
try:
|
211 |
-
|
212 |
-
|
213 |
-
|
214 |
-
f.write(await audio_file.read())
|
215 |
-
|
216 |
-
audio_output_path, metrics_text = await predict(prompt, language, temp_audio_path)
|
217 |
-
os.remove(temp_audio_path)
|
218 |
|
219 |
-
|
220 |
-
|
221 |
-
|
222 |
-
return FileResponse(audio_output_path, media_type="audio/wav")
|
223 |
except Exception as e:
|
224 |
-
return JSONResponse({"error": str(e)}
|
225 |
-
|
226 |
-
async def predict(prompt, language, audio_file_pth):
|
227 |
-
if language not in supported_languages:
|
228 |
-
return None, f"Language {language} not supported"
|
229 |
-
|
230 |
-
speaker_wav = audio_file_pth
|
231 |
-
|
232 |
-
if len(prompt) < 2:
|
233 |
-
return None, "Text prompt is too short"
|
234 |
|
235 |
-
|
236 |
-
|
237 |
-
|
238 |
-
try:
|
239 |
-
gpt_cond_latent, speaker_embedding = xtts_model.get_conditioning_latents(audio_path=speaker_wav, gpt_cond_len=30, gpt_cond_chunk_len=4, max_ref_length=60)
|
240 |
-
|
241 |
-
detected_language = detect_audio_language(audio_file_pth)
|
242 |
-
if detected_language:
|
243 |
-
language = detected_language
|
244 |
-
|
245 |
-
emotion = analyze_music_for_emotion(audio_file_pth)
|
246 |
-
|
247 |
-
prosody_strength = 1.0
|
248 |
-
speaking_rate = 1.0
|
249 |
-
|
250 |
-
if emotion == "energetic":
|
251 |
-
prosody_strength = 1.2
|
252 |
-
speaking_rate = 1.1
|
253 |
-
elif emotion == "sad":
|
254 |
-
prosody_strength = 0.8
|
255 |
-
speaking_rate = 0.9
|
256 |
-
elif emotion == "happy":
|
257 |
-
prosody_strength = 1.1
|
258 |
-
speaking_rate = 1.05
|
259 |
-
|
260 |
-
text_chunks = split_text_into_chunks(prompt)
|
261 |
-
wav_chunks = []
|
262 |
-
for chunk in tqdm(text_chunks, desc="Synthesizing voice chunks"):
|
263 |
-
out = xtts_model.inference(
|
264 |
-
chunk,
|
265 |
-
language,
|
266 |
-
gpt_cond_latent,
|
267 |
-
speaker_embedding,
|
268 |
-
repetition_penalty=5.0,
|
269 |
-
temperature=0.75,
|
270 |
-
enable_text_splitting=True,
|
271 |
-
prosody_strength=prosody_strength,
|
272 |
-
speaking_rate=speaking_rate
|
273 |
-
)
|
274 |
-
wav_chunks.append(torch.tensor(out["wav"]))
|
275 |
-
|
276 |
-
final_wav = torch.cat(wav_chunks, dim=-1)
|
277 |
-
|
278 |
-
output_filename = await save_audio_to_storage(final_wav, "output_" + str(uuid.uuid4()) + ".wav")
|
279 |
-
return output_filename, None
|
280 |
-
|
281 |
-
except Exception as e:
|
282 |
-
return None, str(e)
|
|
|
77 |
language = detect(f.read())
|
78 |
os.remove(temp_filepath)
|
79 |
return language
|
80 |
+
except Exception:
|
81 |
return None
|
82 |
|
83 |
def split_text_into_chunks(text, max_chunk_length=200):
|
|
|
121 |
|
122 |
music_filename = await save_audio_to_storage(wav_music[0].cpu(), "music_" + str(uuid.uuid4()) + ".wav")
|
123 |
|
|
|
124 |
if language not in supported_languages:
|
125 |
raise ValueError(f"Language {language} not supported")
|
126 |
|
127 |
if not text_prompt and not voice_audio:
|
128 |
+
raise ValueError("Text prompt or voice audio is required")
|
129 |
|
130 |
if text_prompt and len(text_prompt) > 1000:
|
131 |
raise ValueError("Text prompt is too long, please keep it under 1000 characters")
|
|
|
176 |
|
177 |
return music_filename, voice_filename
|
178 |
|
179 |
+
except IsADirectoryError:
|
180 |
+
return "Error: Provided path is a directory, not a file.", "Error: Provided path is a directory, not a file."
|
181 |
except Exception as e:
|
182 |
return str(e), str(e)
|
183 |
|
|
|
202 |
|
203 |
iface.launch(share=True)
|
204 |
|
|
|
205 |
app = FastAPI()
|
206 |
|
207 |
@app.post("/synthesize")
|
208 |
async def api_synthesize(prompt: str, language: str = "en", audio_file: UploadFile = File(...)):
|
209 |
try:
|
210 |
+
temp_audio_file = tempfile.NamedTemporaryFile(delete=False)
|
211 |
+
temp_audio_file.write(audio_file.file.read())
|
212 |
+
temp_audio_file.close()
|
|
|
|
|
|
|
|
|
213 |
|
214 |
+
music_output, voice_output = await generate_music_with_voice(prompt, None, temp_audio_file.name, None, None, language)
|
215 |
+
return JSONResponse(content={"music_output": music_output, "voice_output": voice_output})
|
|
|
|
|
216 |
except Exception as e:
|
217 |
+
return JSONResponse(content={"error": str(e)})
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
218 |
|
219 |
+
if __name__ == "__main__":
|
220 |
+
app.run()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|