Update app.py
Browse files
app.py
CHANGED
@@ -8,6 +8,8 @@ import gradio as gr
|
|
8 |
import os
|
9 |
from spaces import GPU
|
10 |
from dotenv import load_dotenv
|
|
|
|
|
11 |
|
12 |
load_dotenv()
|
13 |
|
@@ -88,7 +90,14 @@ def remove_duplicates(text):
|
|
88 |
seen_lines.add(line)
|
89 |
return '\n'.join(unique_lines)
|
90 |
|
91 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
92 |
def generate_model_response(model, inputs):
|
93 |
try:
|
94 |
response = model(inputs)
|
@@ -97,6 +106,22 @@ def generate_model_response(model, inputs):
|
|
97 |
print(f"Error generating model response: {e}")
|
98 |
return ""
|
99 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
100 |
def remove_repetitive_responses(responses):
|
101 |
unique_responses = {}
|
102 |
for response in responses:
|
@@ -124,15 +149,88 @@ async def process_message(message):
|
|
124 |
"""
|
125 |
return formatted_response, curl_command
|
126 |
|
|
|
|
|
|
|
|
|
|
|
127 |
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
135 |
|
136 |
if __name__ == "__main__":
|
137 |
port = int(os.environ.get("PORT", 7860))
|
138 |
-
|
|
|
8 |
import os
|
9 |
from spaces import GPU
|
10 |
from dotenv import load_dotenv
|
11 |
+
import torch
|
12 |
+
from diffusers import DiffusionPipeline
|
13 |
|
14 |
load_dotenv()
|
15 |
|
|
|
90 |
seen_lines.add(line)
|
91 |
return '\n'.join(unique_lines)
|
92 |
|
93 |
+
dtype = torch.bfloat16 if torch.cuda.is_available() else torch.float32
|
94 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
95 |
+
pipe = DiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-schnell", torch_dtype=dtype).to(device)
|
96 |
+
MAX_SEED = np.iinfo(np.int32).max
|
97 |
+
MAX_IMAGE_SIZE = 2048
|
98 |
+
|
99 |
+
@spaces.GPU()
|
100 |
+
@GPU(duration=1)
|
101 |
def generate_model_response(model, inputs):
|
102 |
try:
|
103 |
response = model(inputs)
|
|
|
106 |
print(f"Error generating model response: {e}")
|
107 |
return ""
|
108 |
|
109 |
+
@spaces.GPU()
|
110 |
+
@GPU(duration=1)
|
111 |
+
def infer(prompt, seed=42, randomize_seed=False, width=1024, height=1024, num_inference_steps=4):
|
112 |
+
if randomize_seed:
|
113 |
+
seed = random.randint(0, MAX_SEED)
|
114 |
+
generator = torch.Generator(device=device).manual_seed(seed)
|
115 |
+
image = pipe(
|
116 |
+
prompt=prompt,
|
117 |
+
width=width,
|
118 |
+
height=height,
|
119 |
+
num_inference_steps=num_inference_steps,
|
120 |
+
generator=generator,
|
121 |
+
guidance_scale=0.0
|
122 |
+
).images[0]
|
123 |
+
return image, seed
|
124 |
+
|
125 |
def remove_repetitive_responses(responses):
|
126 |
unique_responses = {}
|
127 |
for response in responses:
|
|
|
149 |
"""
|
150 |
return formatted_response, curl_command
|
151 |
|
152 |
+
examples = [
|
153 |
+
"a tiny astronaut hatching from an egg on the moon",
|
154 |
+
"a cat holding a sign that says hello world",
|
155 |
+
"an anime illustration of a wiener schnitzel",
|
156 |
+
]
|
157 |
|
158 |
+
css="""
|
159 |
+
#col-container {
|
160 |
+
margin: 0 auto;
|
161 |
+
max-width: 520px;
|
162 |
+
}
|
163 |
+
"""
|
164 |
+
|
165 |
+
with gr.Blocks(css=css) as demo:
|
166 |
+
with gr.Column(elem_id="col-container"):
|
167 |
+
gr.Markdown(f"""# FLUX.1 [schnell]
|
168 |
+
12B param rectified flow transformer distilled from [FLUX.1 [pro]](https://blackforestlabs.ai/) for 4 step generation
|
169 |
+
[[blog](https://blackforestlabs.ai/announcing-black-forest-labs/)] [[model](https://huggingface.co/black-forest-labs/FLUX.1-schnell)]
|
170 |
+
""")
|
171 |
+
|
172 |
+
with gr.Row():
|
173 |
+
prompt = gr.Text(
|
174 |
+
label="Prompt",
|
175 |
+
show_label=False,
|
176 |
+
max_lines=1,
|
177 |
+
placeholder="Enter your prompt",
|
178 |
+
container=False,
|
179 |
+
)
|
180 |
+
run_button = gr.Button("Run", scale=0)
|
181 |
+
|
182 |
+
result = gr.Image(label="Result", show_label=False)
|
183 |
+
|
184 |
+
with gr.Accordion("Advanced Settings", open=False):
|
185 |
+
seed = gr.Slider(
|
186 |
+
label="Seed",
|
187 |
+
minimum=0,
|
188 |
+
maximum=MAX_SEED,
|
189 |
+
step=1,
|
190 |
+
value=0,
|
191 |
+
)
|
192 |
+
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
193 |
+
|
194 |
+
with gr.Row():
|
195 |
+
width = gr.Slider(
|
196 |
+
label="Width",
|
197 |
+
minimum=256,
|
198 |
+
maximum=MAX_IMAGE_SIZE,
|
199 |
+
step=32,
|
200 |
+
value=1024,
|
201 |
+
)
|
202 |
+
height = gr.Slider(
|
203 |
+
label="Height",
|
204 |
+
minimum=256,
|
205 |
+
maximum=MAX_IMAGE_SIZE,
|
206 |
+
step=32,
|
207 |
+
value=1024,
|
208 |
+
)
|
209 |
+
|
210 |
+
with gr.Row():
|
211 |
+
num_inference_steps = gr.Slider(
|
212 |
+
label="Number of inference steps",
|
213 |
+
minimum=1,
|
214 |
+
maximum=50,
|
215 |
+
step=1,
|
216 |
+
value=4,
|
217 |
+
)
|
218 |
+
|
219 |
+
gr.Examples(
|
220 |
+
examples=examples,
|
221 |
+
fn=infer,
|
222 |
+
inputs=[prompt],
|
223 |
+
outputs=[result, seed],
|
224 |
+
cache_examples="lazy"
|
225 |
+
)
|
226 |
+
|
227 |
+
gr.on(
|
228 |
+
triggers=[run_button.click, prompt.submit],
|
229 |
+
fn=infer,
|
230 |
+
inputs=[prompt, seed, randomize_seed, width, height, num_inference_steps],
|
231 |
+
outputs=[result, seed]
|
232 |
+
)
|
233 |
|
234 |
if __name__ == "__main__":
|
235 |
port = int(os.environ.get("PORT", 7860))
|
236 |
+
demo.launch(server_port=port)
|