Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,117 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from pydantic import BaseModel
|
2 |
+
from llama_cpp import Llama
|
3 |
+
import os
|
4 |
+
import gradio as gr
|
5 |
+
from dotenv import load_dotenv
|
6 |
+
from fastapi import FastAPI, Request
|
7 |
+
from fastapi.responses import JSONResponse, StreamingResponse
|
8 |
+
import spaces
|
9 |
+
import asyncio
|
10 |
+
import random
|
11 |
+
from transformers import pipeline
|
12 |
+
from io import BytesIO
|
13 |
+
import requests
|
14 |
+
|
15 |
+
app = FastAPI()
|
16 |
+
load_dotenv()
|
17 |
+
|
18 |
+
HUGGINGFACE_TOKEN = os.getenv("HUGGINGFACE_TOKEN")
|
19 |
+
|
20 |
+
summarizer = pipeline("summarization")
|
21 |
+
|
22 |
+
class ModelManager:
|
23 |
+
def __init__(self):
|
24 |
+
self.unified_model = self.load_unified_model()
|
25 |
+
self.params = {
|
26 |
+
"n_ctx": 2048,
|
27 |
+
"n_batch": 512,
|
28 |
+
"n_predict": 512,
|
29 |
+
"repeat_penalty": 1.1,
|
30 |
+
"n_threads": int(os.cpu_count() * 0.75),
|
31 |
+
"seed": -1,
|
32 |
+
"stop": ["</s>"],
|
33 |
+
"tokens": [],
|
34 |
+
"eos_token_id": None,
|
35 |
+
"pad_token_id": None,
|
36 |
+
}
|
37 |
+
|
38 |
+
def load_unified_model(self):
|
39 |
+
model_configs = [
|
40 |
+
{"repo_id": "Ffftdtd5dtft/gpt2-xl-Q2_K-GGUF", "filename": "gpt2-xl-q2_k.gguf", "name": "GPT-2 XL"},
|
41 |
+
{"repo_id": "Ffftdtd5dtft/Meta-Llama-3.1-8B-Instruct-Q2_K-GGUF", "filename": "meta-llama-3.1-8b-instruct-q2_k.gguf", "name": "Meta Llama 3.1-8B Instruct"},
|
42 |
+
{"repo_id": "Ffftdtd5dtft/gemma-2-9b-it-Q2_K-GGUF", "filename": "gemma-2-9b-it-q2_k.gguf", "name": "Gemma 2-9B IT"},
|
43 |
+
{"repo_id": "Ffftdtd5dtft/gemma-2-27b-Q2_K-GGUF", "filename": "gemma-2-27b-q2_k.gguf", "name": "Gemma 2-27B"},
|
44 |
+
{"repo_id": "Ffftdtd5dtft/Phi-3-mini-128k-instruct-Q2_K-GGUF", "filename": "phi-3-mini-128k-instruct-q2_k.gguf", "name": "Phi-3 Mini 128K Instruct"},
|
45 |
+
{"repo_id": "Ffftdtd5dtft/Meta-Llama-3.1-8B-Q2_K-GGUF", "filename": "meta-llama-3.1-8b-q2_k.gguf", "name": "Meta Llama 3.1-8B"},
|
46 |
+
{"repo_id": "Ffftdtd5dtft/Qwen2-7B-Instruct-Q2_K-GGUF", "filename": "qwen2-7b-instruct-q2_k.gguf", "name": "Qwen2 7B Instruct"},
|
47 |
+
{"repo_id": "Ffftdtd5dtft/starcoder2-3b-Q2_K-GGUF", "filename": "starcoder2-3b-q2_k.gguf", "name": "Starcoder2 3B"},
|
48 |
+
{"repo_id": "Ffftdtd5dtft/Qwen2-1.5B-Instruct-Q2_K-GGUF", "filename": "qwen2-1.5b-instruct-q2_k.gguf", "name": "Qwen2 1.5B Instruct"},
|
49 |
+
{"repo_id": "Ffftdtd5dtft/Meta-Llama-3.1-70B-Q2_K-GGUF", "filename": "meta-llama-3.1-70b-q2_k.gguf", "name": "Meta Llama 3.1-70B"},
|
50 |
+
{"repo_id": "Ffftdtd5dtft/Mistral-Nemo-Instruct-2407-Q2_K-GGUF", "filename": "mistral-nemo-instruct-2407-q2_k.gguf", "name": "Mistral Nemo Instruct 2407"},
|
51 |
+
{"repo_id": "Ffftdtd5dtft/Hermes-3-Llama-3.1-8B-IQ1_S-GGUF", "filename": "hermes-3-llama-3.1-8b-iq1_s-imat.gguf", "name": "Hermes 3 Llama 3.1-8B"},
|
52 |
+
{"repo_id": "Ffftdtd5dtft/Phi-3.5-mini-instruct-Q2_K-GGUF", "filename": "phi-3.5-mini-instruct-q2_k.gguf", "name": "Phi 3.5 Mini Instruct"},
|
53 |
+
{"repo_id": "Ffftdtd5dtft/Meta-Llama-3.1-70B-Instruct-Q2_K-GGUF", "filename": "meta-llama-3.1-70b-instruct-q2_k.gguf", "name": "Meta Llama 3.1-70B Instruct"},
|
54 |
+
{"repo_id": "Ffftdtd5dtft/codegemma-2b-IQ1_S-GGUF", "filename": "codegemma-2b-iq1_s-imat.gguf", "name": "Codegemma 2B"},
|
55 |
+
{"repo_id": "Ffftdtd5dtft/Phi-3-mini-128k-instruct-IQ2_XXS-GGUF", "filename": "phi-3-mini-128k-instruct-iq2_xxs-imat.gguf", "name": "Phi 3 Mini 128K Instruct XXS"},
|
56 |
+
{"repo_id": "Ffftdtd5dtft/TinyLlama-1.1B-Chat-v1.0-IQ1_S-GGUF", "filename": "tinyllama-1.1b-chat-v1.0-iq1_s-imat.gguf", "name": "TinyLlama 1.1B Chat"},
|
57 |
+
{"repo_id": "Ffftdtd5dtft/Mistral-NeMo-Minitron-8B-Base-IQ1_S-GGUF", "filename": "mistral-nemo-minitron-8b-base-iq1_s-imat.gguf", "name": "Mistral NeMo Minitron 8B Base"},
|
58 |
+
{"repo_id": "eren23/DistiLabelOrca-TinyLLama-1.1B", "filename": "distilabelorca-tinyllama-1.1b.gguf", "name": "DistiLabelOrca-TinyLLama-1.1B"},
|
59 |
+
{"repo_id": "DevQuasar/Llama-3.2-1B-GGUF", "filename": "Llama-3.2-1B.Q2_K.gguf", "name": "Llama-3.2-1B-GGUF"},
|
60 |
+
]
|
61 |
+
|
62 |
+
models = []
|
63 |
+
for config in model_configs:
|
64 |
+
model_data = BytesIO(requests.get(f"https://huggingface.co/{config['repo_id']}/resolve/main/{config['filename']}", headers={"Authorization": f"Bearer {HUGGINGFACE_TOKEN}"}).content)
|
65 |
+
model = Llama.from_pretrained(model=model_data, **self.params)
|
66 |
+
models.append(model)
|
67 |
+
|
68 |
+
self.params["tokens"] = models[0].tokenize(b"Hello")
|
69 |
+
self.params["eos_token_id"] = models[0].eos_token_id
|
70 |
+
self.params["pad_token_id"] = models[0].pad_token_id
|
71 |
+
return models[0]
|
72 |
+
|
73 |
+
model_manager = ModelManager()
|
74 |
+
|
75 |
+
class ChatRequest(BaseModel):
|
76 |
+
message: str
|
77 |
+
|
78 |
+
@spaces.GPU()
|
79 |
+
async def generate_streaming_response(inputs):
|
80 |
+
top_p = round(random.uniform(0.01, 1.00), 2)
|
81 |
+
top_k = random.randint(1, 100)
|
82 |
+
temperature = round(random.uniform(0.01, 2.00), 2)
|
83 |
+
max_tokens = model_manager.params["n_ctx"] - len(model_manager.unified_model.tokenize(inputs))
|
84 |
+
|
85 |
+
async def stream_response():
|
86 |
+
response = await asyncio.to_thread(model_manager.unified_model, inputs, top_p=top_p, top_k=top_k, temperature=temperature, max_tokens=max_tokens, **model_manager.params)
|
87 |
+
full_text = response['choices'][0]['text']
|
88 |
+
|
89 |
+
if len(full_text) > max_tokens:
|
90 |
+
chunks = [full_text[i:i + max_tokens] for i in range(0, len(full_text), max_tokens)]
|
91 |
+
for chunk in chunks:
|
92 |
+
yield chunk
|
93 |
+
else:
|
94 |
+
yield full_text
|
95 |
+
|
96 |
+
return StreamingResponse(stream_response())
|
97 |
+
|
98 |
+
async def process_message(message):
|
99 |
+
inputs = message.strip()
|
100 |
+
return await generate_streaming_response(inputs)
|
101 |
+
|
102 |
+
@app.post("/generate_multimodel")
|
103 |
+
async def api_generate_multimodel(request: Request):
|
104 |
+
data = await request.json()
|
105 |
+
message = data["message"]
|
106 |
+
return await process_message(message)
|
107 |
+
|
108 |
+
iface = gr.Interface(
|
109 |
+
fn=process_message,
|
110 |
+
inputs=gr.Textbox(lines=2, placeholder="Enter your message here..."),
|
111 |
+
outputs=gr.Markdown(stream=True),
|
112 |
+
title="Unified Multi-Model API",
|
113 |
+
description="Enter a message to get responses from a unified model."
|
114 |
+
)
|
115 |
+
|
116 |
+
if __name__ == "__main__":
|
117 |
+
iface.launch()
|