Upload 5 files
Browse files- app.py +70 -0
- lora.py +27 -0
- module.py +262 -0
- utils.py +52 -0
- vit_base_clip_rank4.ckpt +3 -0
app.py
ADDED
@@ -0,0 +1,70 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import torch
|
3 |
+
import torchvision.transforms as T
|
4 |
+
from PIL import Image
|
5 |
+
from module import myModule
|
6 |
+
|
7 |
+
IMG_SIZE = (224, 224)
|
8 |
+
STATS = dict(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
|
9 |
+
# Define the transformation for the input image
|
10 |
+
TTA_TRANSFORM = T.Compose([
|
11 |
+
T.Resize(IMG_SIZE),
|
12 |
+
T.AutoAugment(),
|
13 |
+
T.ToTensor(),
|
14 |
+
T.Normalize(**STATS)
|
15 |
+
])
|
16 |
+
|
17 |
+
|
18 |
+
st.set_page_config(
|
19 |
+
page_title="Identify the deity using Computer Vision.",
|
20 |
+
layout="centered",
|
21 |
+
initial_sidebar_state="collapsed",
|
22 |
+
menu_items={
|
23 |
+
'Get Help': 'https://www.extremelycoolapp.com/help',
|
24 |
+
'Report a bug': "https://www.extremelycoolapp.com/bug",
|
25 |
+
'About': "# This is an *extremely* cool app!"
|
26 |
+
}
|
27 |
+
)
|
28 |
+
|
29 |
+
|
30 |
+
st.title(":sparkles: I:orange[deity]fy")
|
31 |
+
st.header("Discover the deity with a snap.")
|
32 |
+
|
33 |
+
model = myModule.load_from_checkpoint("checkpoints/vit_base_clip_rank4.ckpt")
|
34 |
+
model.to("cpu")
|
35 |
+
model.eval()
|
36 |
+
|
37 |
+
|
38 |
+
# Function to make predictions
|
39 |
+
def predict(image):
|
40 |
+
# Load and preprocess the input image
|
41 |
+
with Image.open(image).convert('RGB') as img:
|
42 |
+
img_tensor = torch.stack([TTA_TRANSFORM(img) for img in [img for _ in range(10)]])
|
43 |
+
img_tensor = torch.mean(img_tensor, dim=0).unsqueeze(0)
|
44 |
+
|
45 |
+
# Make a prediction
|
46 |
+
with torch.no_grad():
|
47 |
+
logits = model(img_tensor)
|
48 |
+
|
49 |
+
# Get the top 3 predictions and their probabilities
|
50 |
+
probs = torch.softmax(logits, dim=1)
|
51 |
+
topk = torch.topk(probs, k=3)
|
52 |
+
values, indices = topk.values, topk.indices
|
53 |
+
|
54 |
+
values = values.squeeze().cpu().numpy().tolist()
|
55 |
+
indices = indices.cpu().squeeze().numpy().tolist()
|
56 |
+
|
57 |
+
return values, indices
|
58 |
+
|
59 |
+
|
60 |
+
# Upload image through Streamlit
|
61 |
+
img = st.file_uploader(label='choose a file', type=['png', 'jpg', 'jpeg'], label_visibility="hidden")
|
62 |
+
|
63 |
+
|
64 |
+
if img is not None:
|
65 |
+
|
66 |
+
# Make predictions when the user clicks the "Predict" button
|
67 |
+
if st.button("Predict"):
|
68 |
+
values, indices = predict(img)
|
69 |
+
# Display the top 3 predictions as a bar chart
|
70 |
+
st.bar_chart({label: prob for label, prob in zip(indices, values)}, color="#FFC101")
|
lora.py
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# this is code adapted from https://github.com/JamesQFreeman/LoRA-ViT
|
2 |
+
|
3 |
+
import torch.nn as nn
|
4 |
+
|
5 |
+
class LoRA_qkv(nn.Module):
|
6 |
+
""" LoRA qkv module for Vision Transformer. """
|
7 |
+
def __init__(
|
8 |
+
self,
|
9 |
+
qkv: nn.Module,
|
10 |
+
linear_a_q: nn.Module,
|
11 |
+
linear_b_q: nn.Module,
|
12 |
+
linear_a_v: nn.Module,
|
13 |
+
linear_b_v: nn.Module,
|
14 |
+
):
|
15 |
+
super().__init__()
|
16 |
+
self.qkv = qkv
|
17 |
+
self.dim = qkv.in_features
|
18 |
+
self.q_lora = nn.Sequential(linear_a_q, linear_b_q)
|
19 |
+
self.v_lora = nn.Sequential(linear_a_v, linear_b_v)
|
20 |
+
|
21 |
+
def forward(self, x):
|
22 |
+
qkv = self.qkv(x)
|
23 |
+
new_q = self.q_lora(x)
|
24 |
+
new_v = self.v_lora(x)
|
25 |
+
qkv[:, :, : self.dim] += new_q
|
26 |
+
qkv[:, :, -self.dim :] += new_v
|
27 |
+
return qkv
|
module.py
ADDED
@@ -0,0 +1,262 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
import torch
|
3 |
+
import torchvision.transforms as T
|
4 |
+
from os import path
|
5 |
+
from torch.utils.data import DataLoader, WeightedRandomSampler
|
6 |
+
from torch.optim import AdamW
|
7 |
+
from torch.optim.lr_scheduler import CosineAnnealingLR
|
8 |
+
from torch.nn import CrossEntropyLoss
|
9 |
+
from torchmetrics.functional import accuracy
|
10 |
+
from timm import create_model, list_models
|
11 |
+
from timm.models.vision_transformer import VisionTransformer
|
12 |
+
from torchvision.datasets import ImageFolder
|
13 |
+
|
14 |
+
from utils import AverageMeter
|
15 |
+
from lightning import LightningDataModule, LightningModule
|
16 |
+
from huggingface_hub import PyTorchModelHubMixin, login
|
17 |
+
import torch.nn as nn
|
18 |
+
from lora import LoRA_qkv
|
19 |
+
|
20 |
+
|
21 |
+
PRE_SIZE = (256, 256)
|
22 |
+
IMG_SIZE = (224, 224)
|
23 |
+
|
24 |
+
STATS = dict(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
|
25 |
+
DATASET_DIRECTORY = path.join(path.dirname(__file__), "datasets")
|
26 |
+
CHECKPOINT_DIRECTORY = path.join(path.dirname(__file__), "checkpoints")
|
27 |
+
|
28 |
+
TRANSFORMS = {
|
29 |
+
"train": T.Compose([
|
30 |
+
T.Resize(PRE_SIZE),
|
31 |
+
T.RandomCrop(IMG_SIZE),
|
32 |
+
T.ToTensor(),
|
33 |
+
T.Normalize(**STATS)
|
34 |
+
]),
|
35 |
+
"val": T.Compose([
|
36 |
+
T.Resize(PRE_SIZE),
|
37 |
+
T.CenterCrop(IMG_SIZE),
|
38 |
+
T.ToTensor(),
|
39 |
+
T.Normalize(**STATS)
|
40 |
+
])
|
41 |
+
}
|
42 |
+
|
43 |
+
|
44 |
+
|
45 |
+
class myDataModule(LightningDataModule):
|
46 |
+
"""
|
47 |
+
Lightning DataModule for loading and preparing the image dataset.
|
48 |
+
|
49 |
+
Args:
|
50 |
+
ds_name (str): Name of the dataset directory.
|
51 |
+
batch_size (int): Batch size for data loaders.
|
52 |
+
num_workers (int): Number of workers for data loaders.
|
53 |
+
"""
|
54 |
+
def __init__(self, ds_name: str = "deities", batch_size: int = 32, num_workers: int = 8):
|
55 |
+
super(myDataModule, self).__init__()
|
56 |
+
|
57 |
+
self.ds_path = path.join(DATASET_DIRECTORY, ds_name)
|
58 |
+
assert path.exists(self.ds_path), f"Dataset {ds_name} not found in {DATASET_DIRECTORY}."
|
59 |
+
|
60 |
+
self.ds_name = ds_name
|
61 |
+
self.batch_size = batch_size
|
62 |
+
self.num_workers = num_workers
|
63 |
+
|
64 |
+
|
65 |
+
def setup(self, stage=None):
|
66 |
+
if stage == "fit" or stage is None:
|
67 |
+
self.train_ds = ImageFolder(root=path.join(self.ds_path, 'train'), transform=TRANSFORMS['train'])
|
68 |
+
self.val_ds = ImageFolder(root=path.join(self.ds_path, 'val'), transform=TRANSFORMS['val'])
|
69 |
+
# Number of classes
|
70 |
+
self.num_classes = len(self.train_ds.classes)
|
71 |
+
|
72 |
+
|
73 |
+
def train_dataloader(self) -> DataLoader:
|
74 |
+
# Weighted Random sampler for imbalanced dataset
|
75 |
+
class_samples = [0] * self.num_classes
|
76 |
+
for _, (_, label) in enumerate(self.train_ds):
|
77 |
+
class_samples[label] += 1
|
78 |
+
weights = [1.0 / class_samples[label] for _, label in self.train_ds]
|
79 |
+
self.sampler = WeightedRandomSampler(weights, len(weights), replacement=True)
|
80 |
+
return DataLoader(dataset=self.train_ds, batch_size=self.batch_size,
|
81 |
+
sampler=self.sampler, num_workers=self.num_workers, persistent_workers=True)
|
82 |
+
|
83 |
+
|
84 |
+
def val_dataloader(self) -> DataLoader:
|
85 |
+
return DataLoader(dataset=self.val_ds, batch_size=self.batch_size,
|
86 |
+
shuffle=False, num_workers=self.num_workers, persistent_workers=True)
|
87 |
+
|
88 |
+
|
89 |
+
|
90 |
+
|
91 |
+
class myModule(LightningModule, PyTorchModelHubMixin):
|
92 |
+
"""
|
93 |
+
Lightning Module for training and evaluating the Image classification model.
|
94 |
+
|
95 |
+
Args:
|
96 |
+
model_name (str): Name of the Vision Transformer model.
|
97 |
+
num_classes (int): Number of classes in the dataset.
|
98 |
+
freeze_flag (bool): Flag to freeze the base model parameters.
|
99 |
+
use_lora (bool): Flag to use LoRA (Local Rank Adaptation) for fine-tuning.
|
100 |
+
rank (int): Rank for LoRA if use_lora is True.
|
101 |
+
learning_rate (float): Learning rate for the optimizer.
|
102 |
+
weight_decay (float): Weight decay for the optimizer.
|
103 |
+
push_to_hf (bool): Flag to push model to Huggingface Hub.
|
104 |
+
commit_message (str): Commit message
|
105 |
+
repo_id (str): Huggingface repo id
|
106 |
+
"""
|
107 |
+
def __init__(self,
|
108 |
+
model_name: str = "vit_tiny_patch16_224",
|
109 |
+
num_classes: int = 25,
|
110 |
+
freeze_flag: bool = True,
|
111 |
+
use_lora: bool = False,
|
112 |
+
rank: int = None,
|
113 |
+
learning_rate: float = 3e-4,
|
114 |
+
weight_decay: float = 2e-5,
|
115 |
+
push_to_hf: bool = True,
|
116 |
+
commit_message: str = "my model",
|
117 |
+
repo_id: str = "Yegiiii/ideityfy"
|
118 |
+
):
|
119 |
+
|
120 |
+
super(myModule, self).__init__()
|
121 |
+
self.save_hyperparameters()
|
122 |
+
self.model_name = model_name
|
123 |
+
self.num_classes = num_classes
|
124 |
+
self.freeze_flag = freeze_flag
|
125 |
+
self.rank = rank
|
126 |
+
self.use_lora = use_lora
|
127 |
+
self.learning_rate = learning_rate
|
128 |
+
self.weight_decay = weight_decay
|
129 |
+
self.push_to_hf = push_to_hf
|
130 |
+
self.commit_message = commit_message
|
131 |
+
self.repo_id = repo_id
|
132 |
+
|
133 |
+
assert model_name in list_models(), f"Timm model name {model_name} not available."
|
134 |
+
timm_model = create_model(model_name, pretrained=True)
|
135 |
+
assert isinstance(timm_model, VisionTransformer), f"{model_name} not a Vision Transformer."
|
136 |
+
self.model = timm_model
|
137 |
+
|
138 |
+
if freeze_flag:
|
139 |
+
# Freeze the Timm model parameters
|
140 |
+
self.freeze()
|
141 |
+
|
142 |
+
if use_lora:
|
143 |
+
# Add LoRA matrices to the Timm model
|
144 |
+
assert freeze_flag, "Set freeze_flag to True for using LoRA fine-tuning."
|
145 |
+
assert rank, "Rank can't be None."
|
146 |
+
# self.model = LoRA_VisionTransformer(self.model, rank)
|
147 |
+
self.add_lora()
|
148 |
+
|
149 |
+
self.model.reset_classifier(num_classes)
|
150 |
+
|
151 |
+
# Loss function
|
152 |
+
self.criterion = CrossEntropyLoss()
|
153 |
+
|
154 |
+
# Validation metrics
|
155 |
+
self.top1_acc = AverageMeter()
|
156 |
+
self.top3_acc = AverageMeter()
|
157 |
+
self.top5_acc = AverageMeter()
|
158 |
+
|
159 |
+
|
160 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
161 |
+
return self.model(x)
|
162 |
+
|
163 |
+
|
164 |
+
def on_fit_start(self) -> None:
|
165 |
+
num_classes = self.trainer.datamodule.num_classes
|
166 |
+
assert num_classes == self.num_classes, \
|
167 |
+
f"Number of classes provided in the argument ({self.num_classes}) is not matching \
|
168 |
+
the number of classes in the dataset ({num_classes})."
|
169 |
+
|
170 |
+
|
171 |
+
def on_fit_end(self) -> None:
|
172 |
+
if self.push_to_hf:
|
173 |
+
login()
|
174 |
+
self.push_to_hub(repo_id=self.repo_id, commit_message=self.commit_message)
|
175 |
+
|
176 |
+
|
177 |
+
def configure_optimizers(self):
|
178 |
+
optimizer = AdamW(params=filter(lambda param: param.requires_grad, self.model.parameters()),
|
179 |
+
lr=self.learning_rate, weight_decay=self.weight_decay)
|
180 |
+
|
181 |
+
scheduler = CosineAnnealingLR(optimizer, self.trainer.max_epochs, 1e-6)
|
182 |
+
return ([optimizer], [scheduler])
|
183 |
+
|
184 |
+
|
185 |
+
def shared_step(self, x: torch.Tensor, y: torch.Tensor):
|
186 |
+
logits = self(x)
|
187 |
+
loss = self.criterion(logits, y)
|
188 |
+
return logits, loss
|
189 |
+
|
190 |
+
|
191 |
+
def training_step(self, batch, batch_idx) -> torch.Tensor:
|
192 |
+
x, y = batch
|
193 |
+
_, loss = self.shared_step(x, y)
|
194 |
+
|
195 |
+
self.log("train_loss", loss, prog_bar=True, logger=True, on_epoch=True)
|
196 |
+
return loss
|
197 |
+
|
198 |
+
|
199 |
+
def validation_step(self, batch, batch_idx) -> dict:
|
200 |
+
x, y = batch
|
201 |
+
logits, loss = self.shared_step(x, y)
|
202 |
+
|
203 |
+
self.top1_acc(
|
204 |
+
val=accuracy(logits, y, average="weighted", top_k=1, num_classes=self.num_classes))
|
205 |
+
self.top3_acc(
|
206 |
+
val=accuracy(logits, y, average="weighted", top_k=3, num_classes=self.num_classes))
|
207 |
+
self.top5_acc(
|
208 |
+
val=accuracy(logits, y, average="weighted", top_k=5, num_classes=self.num_classes))
|
209 |
+
|
210 |
+
metric_dict = {
|
211 |
+
"val_loss": loss,
|
212 |
+
"top1_acc": self.top1_acc.avg,
|
213 |
+
"top3_acc": self.top3_acc.avg,
|
214 |
+
"top5_acc": self.top5_acc.avg
|
215 |
+
}
|
216 |
+
|
217 |
+
self.log_dict(metric_dict, prog_bar=True, logger=True, on_epoch=True)
|
218 |
+
return metric_dict
|
219 |
+
|
220 |
+
|
221 |
+
def on_validation_epoch_end(self) -> None:
|
222 |
+
self.top1_acc.reset()
|
223 |
+
self.top3_acc.reset()
|
224 |
+
self.top5_acc.reset()
|
225 |
+
|
226 |
+
|
227 |
+
def add_lora(self):
|
228 |
+
self.w_As = []
|
229 |
+
self.w_Bs = []
|
230 |
+
|
231 |
+
for _, blk in enumerate(self.model.blocks):
|
232 |
+
w_qkv_linear = blk.attn.qkv
|
233 |
+
self.dim = w_qkv_linear.in_features
|
234 |
+
lora_a_linear_q = nn.Linear(self.dim, self.rank, bias=False)
|
235 |
+
lora_b_linear_q = nn.Linear(self.rank, self.dim, bias=False)
|
236 |
+
lora_a_linear_v = nn.Linear(self.dim, self.rank, bias=False)
|
237 |
+
lora_b_linear_v = nn.Linear(self.rank, self.dim, bias=False)
|
238 |
+
self.w_As.append(lora_a_linear_q)
|
239 |
+
self.w_Bs.append(lora_b_linear_q)
|
240 |
+
self.w_As.append(lora_a_linear_v)
|
241 |
+
self.w_Bs.append(lora_b_linear_v)
|
242 |
+
blk.attn.qkv = LoRA_qkv(w_qkv_linear, lora_a_linear_q,
|
243 |
+
lora_b_linear_q, lora_a_linear_v, lora_b_linear_v)
|
244 |
+
|
245 |
+
for w_A in self.w_As:
|
246 |
+
nn.init.kaiming_uniform_(w_A.weight, a=math.sqrt(5))
|
247 |
+
for w_B in self.w_Bs:
|
248 |
+
nn.init.zeros_(w_B.weight)
|
249 |
+
|
250 |
+
|
251 |
+
|
252 |
+
if __name__ == "__main__":
|
253 |
+
# from torchinfo import summary
|
254 |
+
|
255 |
+
# module = myModule(freeze_flag=False)
|
256 |
+
# summary(module, (1, 3, 224, 224))
|
257 |
+
|
258 |
+
from datasets import load_dataset
|
259 |
+
|
260 |
+
dataset = load_dataset("Yegiiii/deities")
|
261 |
+
print(dataset)
|
262 |
+
|
utils.py
ADDED
@@ -0,0 +1,52 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import platform
|
3 |
+
|
4 |
+
|
5 |
+
class AverageMeter(object):
|
6 |
+
"""Computes and stores the average and current value"""
|
7 |
+
|
8 |
+
def __init__(self):
|
9 |
+
self.reset()
|
10 |
+
|
11 |
+
def reset(self):
|
12 |
+
self.val = 0
|
13 |
+
self.avg = 0
|
14 |
+
self.sum = 0
|
15 |
+
self.count = 0
|
16 |
+
|
17 |
+
def __call__(self, val, n=1):
|
18 |
+
self.val = val
|
19 |
+
self.sum += val * n
|
20 |
+
self.count += n
|
21 |
+
self.avg = self.sum / self.count
|
22 |
+
|
23 |
+
|
24 |
+
|
25 |
+
def getPlatform():
|
26 |
+
plt = platform.system()
|
27 |
+
if plt=='Darwin':
|
28 |
+
return 'mac'
|
29 |
+
return plt
|
30 |
+
|
31 |
+
|
32 |
+
|
33 |
+
def hasGPU(plt:str):
|
34 |
+
if plt == 'mac':
|
35 |
+
return torch.backends.mps.is_available()
|
36 |
+
return torch.cuda.is_available()
|
37 |
+
|
38 |
+
|
39 |
+
|
40 |
+
def getDevice(plt:str):
|
41 |
+
if plt == 'mac':
|
42 |
+
return torch.device('mps')
|
43 |
+
return torch.device('cuda')
|
44 |
+
|
45 |
+
|
46 |
+
|
47 |
+
def disableWarnings():
|
48 |
+
import warnings
|
49 |
+
warnings.filterwarnings("ignore", category=UserWarning, module="transformers.utils.generic")
|
50 |
+
warnings.filterwarnings("ignore", category=UserWarning, module="trl.trainer.ppo_config")
|
51 |
+
warnings.filterwarnings("ignore", message="torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly")
|
52 |
+
|
vit_base_clip_rank4.ckpt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2028c9135feda494935c91ad8b33089df6e6df3ef13b73d4f8a187af41feb5f9
|
3 |
+
size 345320306
|