AdrielAmoguis commited on
Commit
e224bb7
·
1 Parent(s): d05911d

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +8 -8
app.py CHANGED
@@ -8,18 +8,18 @@ m_raw_model = YOLO("M-Raw.pt")
8
  n_raw_model = YOLO("N-Raw.pt")
9
  s_raw_model = YOLO("S-Raw.pt")
10
 
11
- def snap(image, model, conf):
12
  # Convert the image to a numpy array
13
  image = np.array(image)
14
 
15
  # Run the selected model
16
  results = None
17
  if model == "M-Raw":
18
- results = m_raw_model(image, conf=conf)
19
  elif model == "N-Raw":
20
- results = n_raw_model(image, conf=conf)
21
  elif model == "S-Raw":
22
- results = s_raw_model(image, conf=conf)
23
 
24
  # Draw the bounding boxes
25
  resulting_image = results.render()
@@ -31,15 +31,15 @@ def snap(image, model, conf):
31
  labels = results.pandas().xyxy[0]["name"].values
32
 
33
  # Sort the labels by their x-value first and then by their y-value
34
- print(labels)
35
 
36
- return [resulting_image, labels]
37
 
38
 
39
  demo = gr.Interface(
40
  snap,
41
- [gr.Image(source="webcam", tool=None, streaming=True), gr.inputs.Radio(["M-Raw", "N-Raw", "S-Raw"]), gr.inputs.Slider(0.0, 1.0, 0.5, 0.1, "Confidence")],
42
- ["image", "text"],
43
  title="Baybayin Instance Detection"
44
  )
45
 
 
8
  n_raw_model = YOLO("N-Raw.pt")
9
  s_raw_model = YOLO("S-Raw.pt")
10
 
11
+ def snap(image, model, conf, iou):
12
  # Convert the image to a numpy array
13
  image = np.array(image)
14
 
15
  # Run the selected model
16
  results = None
17
  if model == "M-Raw":
18
+ results = m_raw_model(image, conf=conf, iou=iou)
19
  elif model == "N-Raw":
20
+ results = n_raw_model(image, conf=conf, iou=iou)
21
  elif model == "S-Raw":
22
+ results = s_raw_model(image, conf=conf, iou=iou)
23
 
24
  # Draw the bounding boxes
25
  resulting_image = results.render()
 
31
  labels = results.pandas().xyxy[0]["name"].values
32
 
33
  # Sort the labels by their x-value first and then by their y-value
34
+ # print(labels)
35
 
36
+ return [resulting_image]
37
 
38
 
39
  demo = gr.Interface(
40
  snap,
41
+ [gr.Image(source="webcam", tool=None, streaming=True), gr.inputs.Radio(["M-Raw", "N-Raw", "S-Raw"]), gr.inputs.Slider(0.3, 1.0, "Classifier Confidence Threshold", value=0.6), gr.inputs.Slider(0.3, 1.0, "IoU Confidence Threshold", value=0.7)],
42
+ ["image"],
43
  title="Baybayin Instance Detection"
44
  )
45