Spaces:
Runtime error
Runtime error
# coding=utf-8 | |
# Copyright 2022 The HuggingFace Inc. team. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import os | |
import sys | |
from pathlib import Path | |
from typing import Dict, Optional, Union | |
from uuid import uuid4 | |
from huggingface_hub import HfFolder, whoami | |
from . import __version__ | |
from .utils import ENV_VARS_TRUE_VALUES, logging | |
from .utils.import_utils import ( | |
_flax_version, | |
_jax_version, | |
_onnxruntime_version, | |
_torch_version, | |
is_flax_available, | |
is_modelcards_available, | |
is_onnx_available, | |
is_torch_available, | |
) | |
if is_modelcards_available(): | |
from modelcards import CardData, ModelCard | |
logger = logging.get_logger(__name__) | |
MODEL_CARD_TEMPLATE_PATH = Path(__file__).parent / "utils" / "model_card_template.md" | |
SESSION_ID = uuid4().hex | |
DISABLE_TELEMETRY = os.getenv("DISABLE_TELEMETRY", "").upper() in ENV_VARS_TRUE_VALUES | |
def http_user_agent(user_agent: Union[Dict, str, None] = None) -> str: | |
""" | |
Formats a user-agent string with basic info about a request. | |
""" | |
ua = f"diffusers/{__version__}; python/{sys.version.split()[0]}; session_id/{SESSION_ID}" | |
if DISABLE_TELEMETRY: | |
return ua + "; telemetry/off" | |
if is_torch_available(): | |
ua += f"; torch/{_torch_version}" | |
if is_flax_available(): | |
ua += f"; jax/{_jax_version}" | |
ua += f"; flax/{_flax_version}" | |
if is_onnx_available(): | |
ua += f"; onnxruntime/{_onnxruntime_version}" | |
# CI will set this value to True | |
if os.environ.get("DIFFUSERS_IS_CI", "").upper() in ENV_VARS_TRUE_VALUES: | |
ua += "; is_ci/true" | |
if isinstance(user_agent, dict): | |
ua += "; " + "; ".join(f"{k}/{v}" for k, v in user_agent.items()) | |
elif isinstance(user_agent, str): | |
ua += "; " + user_agent | |
return ua | |
def get_full_repo_name(model_id: str, organization: Optional[str] = None, token: Optional[str] = None): | |
if token is None: | |
token = HfFolder.get_token() | |
if organization is None: | |
username = whoami(token)["name"] | |
return f"{username}/{model_id}" | |
else: | |
return f"{organization}/{model_id}" | |
def create_model_card(args, model_name): | |
if not is_modelcards_available: | |
raise ValueError( | |
"Please make sure to have `modelcards` installed when using the `create_model_card` function. You can" | |
" install the package with `pip install modelcards`." | |
) | |
if hasattr(args, "local_rank") and args.local_rank not in [-1, 0]: | |
return | |
hub_token = args.hub_token if hasattr(args, "hub_token") else None | |
repo_name = get_full_repo_name(model_name, token=hub_token) | |
model_card = ModelCard.from_template( | |
card_data=CardData( # Card metadata object that will be converted to YAML block | |
language="en", | |
license="apache-2.0", | |
library_name="diffusers", | |
tags=[], | |
datasets=args.dataset_name, | |
metrics=[], | |
), | |
template_path=MODEL_CARD_TEMPLATE_PATH, | |
model_name=model_name, | |
repo_name=repo_name, | |
dataset_name=args.dataset_name if hasattr(args, "dataset_name") else None, | |
learning_rate=args.learning_rate, | |
train_batch_size=args.train_batch_size, | |
eval_batch_size=args.eval_batch_size, | |
gradient_accumulation_steps=args.gradient_accumulation_steps | |
if hasattr(args, "gradient_accumulation_steps") | |
else None, | |
adam_beta1=args.adam_beta1 if hasattr(args, "adam_beta1") else None, | |
adam_beta2=args.adam_beta2 if hasattr(args, "adam_beta2") else None, | |
adam_weight_decay=args.adam_weight_decay if hasattr(args, "adam_weight_decay") else None, | |
adam_epsilon=args.adam_epsilon if hasattr(args, "adam_epsilon") else None, | |
lr_scheduler=args.lr_scheduler if hasattr(args, "lr_scheduler") else None, | |
lr_warmup_steps=args.lr_warmup_steps if hasattr(args, "lr_warmup_steps") else None, | |
ema_inv_gamma=args.ema_inv_gamma if hasattr(args, "ema_inv_gamma") else None, | |
ema_power=args.ema_power if hasattr(args, "ema_power") else None, | |
ema_max_decay=args.ema_max_decay if hasattr(args, "ema_max_decay") else None, | |
mixed_precision=args.mixed_precision, | |
) | |
card_path = os.path.join(args.output_dir, "README.md") | |
model_card.save(card_path) | |