YazawaSunrise commited on
Commit
9f54c71
·
1 Parent(s): cc5f514

Upload 43 files

Browse files
Eng_docs.md ADDED
@@ -0,0 +1,83 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # SoftVC VITS Singing Voice Conversion
2
+ ## Updates
3
+ > According to incomplete statistics, it seems that training with multiple speakers may lead to **worsened leaking of voice timbre**. It is not recommended to train models with more than 5 speakers. The current suggestion is to try to train models with only a single speaker if you want to achieve a voice timbre that is more similar to the target.
4
+ > Fixed the issue with unwanted staccato, improving audio quality by a decent amount.\
5
+ > The 2.0 version has been moved to the 2.0 branch.\
6
+ > Version 3.0 uses the code structure of FreeVC, which isn't compatible with older versions.\
7
+ > Compared to [DiffSVC](https://github.com/prophesier/diff-svc) , diffsvc performs much better when the training data is of extremely high quality, but this repository may perform better on datasets with lower quality. Additionally, this repository is much faster in terms of inference speed compared to diffsvc.
8
+
9
+ ## Model Overview
10
+ A singing voice coversion (SVC) model, using the SoftVC encoder to extract features from the input audio, sent into VITS along with the F0 to replace the original input to acheive a voice conversion effect. Additionally, changing the vocoder to [NSF HiFiGAN](https://github.com/openvpi/DiffSinger/tree/refactor/modules/nsf_hifigan) to fix the issue with unwanted staccato.
11
+ ## Notice
12
+ + The current branch is the 32kHz version, which requires less vram during inferencing, as well as faster inferencing speeds, and datasets for said branch take up less disk space. Thus the 32 kHz branch is recommended for use.
13
+ + If you want to train 48 kHz variant models, switch to the [main branch](https://github.com/innnky/so-vits-svc/tree/main).
14
+ ## Colab notebook script for dataset creation and training.
15
+ [colab training notebook](https://colab.research.google.com/drive/1rCUOOVG7-XQlVZuWRAj5IpGrMM8t07pE?usp=sharing)
16
+
17
+ ## Required models
18
+ + soft vc hubert:[hubert-soft-0d54a1f4.pt](https://github.com/bshall/hubert/releases/download/v0.1/hubert-soft-0d54a1f4.pt)
19
+ + Place under `hubert`.
20
+ + Pretrained models [G_0.pth](https://huggingface.co/innnky/sovits_pretrained/resolve/main/G_0.pth) and [D_0.pth](https://huggingface.co/innnky/sovits_pretrained/resolve/main/D_0.pth)
21
+ + Place under `logs/32k`.
22
+ + Pretrained models are required, because from experiments, training from scratch can be rather unpredictable to say the least, and training with a pretrained model can greatly improve training speeds.
23
+ + The pretrained model includes云灏, 即霜, 辉宇·星AI, 派蒙, and 绫地宁宁, covering the common ranges of both male and female voices, and so it can be seen as a rather universal pretrained model.
24
+ + The pretrained model exludes the `optimizer speaker_embedding` section, rendering it only usable for pretraining and incapable of inferencing with.
25
+ ```shell
26
+ # For simple downloading.
27
+ # hubert
28
+ wget -P hubert/ https://github.com/bshall/hubert/releases/download/v0.1/hubert-soft-0d54a1f4.pt
29
+ # G&D pretrained models
30
+ wget -P logs/32k/ https://huggingface.co/innnky/sovits_pretrained/resolve/main/G_0.pth
31
+ wget -P logs/32k/ https://huggingface.co/innnky/sovits_pretrained/resolve/main/D_0.pth
32
+
33
+ ```
34
+
35
+
36
+ ## Dataset preparation
37
+ All that is required is that the data be put under the `dataset_raw` folder in the structure format provided below.
38
+ ```shell
39
+ dataset_raw
40
+ ├───speaker0
41
+ │ ├───xxx1-xxx1.wav
42
+ │ ├───...
43
+ │ └───Lxx-0xx8.wav
44
+ └───speaker1
45
+ ├───xx2-0xxx2.wav
46
+ ├───...
47
+ └───xxx7-xxx007.wav
48
+ ```
49
+
50
+ ## Data pre-processing.
51
+ 1. Resample to 32khz
52
+
53
+ ```shell
54
+ python resample.py
55
+ ```
56
+ 2. Automatically sort out training set, validation set, test set, and automatically generate configuration files.
57
+ ```shell
58
+ python preprocess_flist_config.py
59
+ # Notice.
60
+ # The n_speakers value in the config will be set automatically according to the amount of speakers in the dataset.
61
+ # To reserve space for additionally added speakers in the dataset, the n_speakers value will be be set to twice the actual amount.
62
+ # If you want even more space for adding more data, you can edit the n_speakers value in the config after runing this step.
63
+ # This can not be changed after training starts.
64
+ ```
65
+ 3. Generate hubert and F0 features/
66
+ ```shell
67
+ python preprocess_hubert_f0.py
68
+ ```
69
+ After running the step above, the `dataset` folder will contain all the pre-processed data, you can delete the `dataset_raw` folder after that.
70
+
71
+ ## Training.
72
+ ```shell
73
+ python train.py -c configs/config.json -m 32k
74
+ ```
75
+
76
+ ## Inferencing.
77
+
78
+ Use [inference_main.py](inference_main.py)
79
+ + Edit `model_path` to your newest checkpoint.
80
+ + Place the input audio under the `raw` folder.
81
+ + Change `clean_names` to the output file name.
82
+ + Use `trans` to edit the pitch shifting amount (semitones).
83
+ + Change `spk_list` to the speaker name.
LICENSE ADDED
@@ -0,0 +1,21 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ MIT License
2
+
3
+ Copyright (c) 2021 Jingyi Li
4
+
5
+ Permission is hereby granted, free of charge, to any person obtaining a copy
6
+ of this software and associated documentation files (the "Software"), to deal
7
+ in the Software without restriction, including without limitation the rights
8
+ to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
9
+ copies of the Software, and to permit persons to whom the Software is
10
+ furnished to do so, subject to the following conditions:
11
+
12
+ The above copyright notice and this permission notice shall be included in all
13
+ copies or substantial portions of the Software.
14
+
15
+ THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16
+ IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17
+ FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
18
+ AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19
+ LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20
+ OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21
+ SOFTWARE.
README.md CHANGED
@@ -1,13 +1,121 @@
1
- ---
2
- title: LoveLive So Vits Svc
3
- emoji: 🐠
4
- colorFrom: gray
5
- colorTo: purple
6
- sdk: gradio
7
- sdk_version: 3.17.0
8
- app_file: app.py
9
- pinned: false
10
- license: cc-by-nc-3.0
11
- ---
12
-
13
- Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # SoftVC VITS Singing Voice Conversion
2
+ ## English docs
3
+ [英语资料](Eng_docs.md)
4
+
5
+
6
+ ## Update
7
+ > 据不完全统计,多说话人似乎会导致**音色泄漏加重**,不建议训练超过5人的模型,目前的建议是如果想炼出来更像目标音色,**尽可能炼单说话人的**\
8
+ > 断音问题已解决,音质提升了不少\
9
+ > 2.0版本已经移至 sovits_2.0分支\
10
+ > 3.0版本使用FreeVC的代码结构,与旧版本不通用\
11
+ > 与[DiffSVC](https://github.com/prophesier/diff-svc) 相比,在训练数据质量非常高时diffsvc有着更好的表现,对于质量差一些的数据集,本仓库可能会有更好的表现,此外,本仓库推理速度上比diffsvc快很多
12
+
13
+
14
+ ## 模型简介
15
+ 歌声音色转换模型,通过SoftVC内容编码器提取源音频语音特征,与F0同时输入VITS替换原本的文本输入达到歌声转换的效果。同时,更换声码器为 [NSF HiFiGAN](https://github.com/openvpi/DiffSinger/tree/refactor/modules/nsf_hifigan) 解决断音问题
16
+
17
+
18
+ ## 注意
19
+ + 当前分支是32khz版本的分支,32khz模型推理更快,显存占用大幅减小,数据集所占硬盘空间也大幅降低,推荐训练该版本模型
20
+ + 如果要训练48khz的模型请切换到[main分支](https://github.com/innnky/so-vits-svc/tree/main)
21
+
22
+
23
+ ## 预先下载的模型文件
24
+ + soft vc hubert:[hubert-soft-0d54a1f4.pt](https://github.com/bshall/hubert/releases/download/v0.1/hubert-soft-0d54a1f4.pt)
25
+ + 放在hubert目录下
26
+ + 预训练底模文件 [G_0.pth](https://huggingface.co/innnky/sovits_pretrained/resolve/main/G_0.pth) 与 [D_0.pth](https://huggingface.co/innnky/sovits_pretrained/resolve/main/D_0.pth)
27
+ + 放在logs/32k 目录下
28
+ + 预训练底模为必选项,因为据测试从零开始训练有概率不收敛,同时底模也能加快训练速度
29
+ + 预训练底模训练数据集包含云灏 即霜 辉宇·星AI 派蒙 绫地宁宁,覆盖男女生常见音域,可以认为是相对通用的底模
30
+ + 底模删除了optimizer speaker_embedding 等无关权重, 只可以用于初始化训练,无法用于推理
31
+ + 该底模和48khz底模通用
32
+ ```shell
33
+ # 一键下载
34
+ # hubert
35
+ wget -P hubert/ https://github.com/bshall/hubert/releases/download/v0.1/hubert-soft-0d54a1f4.pt
36
+ # G与D预训练模型
37
+ wget -P logs/32k/ https://huggingface.co/innnky/sovits_pretrained/resolve/main/G_0.pth
38
+ wget -P logs/32k/ https://huggingface.co/innnky/sovits_pretrained/resolve/main/D_0.pth
39
+
40
+ ```
41
+
42
+
43
+ ## colab一键数据集制作、训练脚本
44
+ [一键colab](https://colab.research.google.com/drive/1_-gh9i-wCPNlRZw6pYF-9UufetcVrGBX?usp=sharing)
45
+
46
+
47
+ ## 数据集准备
48
+ 仅需要以以下文件结构将数据集放入dataset_raw目录即可
49
+ ```shell
50
+ dataset_raw
51
+ ├───speaker0
52
+ │ ├───xxx1-xxx1.wav
53
+ │ ├───...
54
+ │ └───Lxx-0xx8.wav
55
+ └───speaker1
56
+ ├───xx2-0xxx2.wav
57
+ ├───...
58
+ └───xxx7-xxx007.wav
59
+ ```
60
+
61
+
62
+ ## 数据预处理
63
+ 1. 重采样至 32khz
64
+
65
+ ```shell
66
+ python resample.py
67
+ ```
68
+ 2. 自动划分训练集 验证集 测试集 以及自动生成配置文件
69
+ ```shell
70
+ python preprocess_flist_config.py
71
+ # 注意
72
+ # 自动生成的配置文件中,说话人数量n_speakers会自动按照数据集中的人数而定
73
+ # 为了给之后添加说话人留下一定空间,n_speakers自动设置为 当前数据集人数乘2
74
+ # 如果想多留一些空位可以在此步骤后 自行修改生成的config.json中n_speakers数量
75
+ # 一旦模型开始训练后此项不可再更改
76
+ ```
77
+ 3. 生成hubert与f0
78
+ ```shell
79
+ python preprocess_hubert_f0.py
80
+ ```
81
+ 执行完以上步骤后 dataset 目录便是预处理完成的数据,可以删除dataset_raw文件夹了
82
+
83
+
84
+ ## 训练
85
+ ```shell
86
+ python train.py -c configs/config.json -m 32k
87
+ ```
88
+
89
+
90
+ ## 推理
91
+
92
+ 使用 [inference_main.py](inference_main.py)
93
+ + 更改model_path为你自己训练的最新模型记录点
94
+ + 将待转换的音频放在raw文件夹下
95
+ + clean_names 写待转换的音频名称
96
+ + trans 填写变调半音数量
97
+ + spk_list 填写合成的说话人名称
98
+
99
+
100
+ ## Onnx导出
101
+ 使用 [onnx_export.py](onnx_export.py)
102
+ + 新建文件夹:checkpoints 并打开
103
+ + 在checkpoints文件夹中新建一个文件夹作为项目文件夹,文件夹名为你的项目名称
104
+ + 将你的模型更名为model.pth,配置文件更名为config.json,并放置到刚才创建的文件夹下
105
+ + 将 [onnx_export.py](onnx_export.py) 中path = "NyaruTaffy" 的 "NyaruTaffy" 修改为你的项目名称
106
+ + 运行 [onnx_export.py](onnx_export.py)
107
+ + 等待执行完毕,在你的项目文件夹下会生成一个model.onnx,即为导出的模型
108
+ + 注意:若想导出48K模型,请按照以下步骤修改文件
109
+ + 请打开[model_onnx.py](model_onnx.py),将其中最后一个class的hps中32000改为48000
110
+ + 请打开[nvSTFT](/vdecoder/hifigan/nvSTFT.py),将其中所有32000改为48000
111
+ ### Onnx模型支持的UI
112
+ + [MoeSS](https://github.com/NaruseMioShirakana/MoeSS)
113
+
114
+ ## Gradio(WebUI)
115
+ 使用 [sovits_gradio.py](sovits_gradio.py)
116
+ + 新建文件夹:checkpoints 并打开
117
+ + 在checkpoints文件夹中新建一个文件夹作为项目文件夹,文件夹名为你的项目名称
118
+ + 将你的模型更名为model.pth,配置文件更名为config.json,并放置到刚才创建的文件夹下
119
+ + 运行 [sovits_gradio.py](sovits_gradio.py)
120
+
121
+
add_speaker.py ADDED
@@ -0,0 +1,62 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import argparse
3
+ from tqdm import tqdm
4
+ from random import shuffle
5
+ import json
6
+
7
+
8
+ if __name__ == "__main__":
9
+ parser = argparse.ArgumentParser()
10
+ parser.add_argument("--train_list", type=str, default="./filelists/train.txt", help="path to train list")
11
+ parser.add_argument("--val_list", type=str, default="./filelists/val.txt", help="path to val list")
12
+ parser.add_argument("--test_list", type=str, default="./filelists/test.txt", help="path to test list")
13
+ parser.add_argument("--source_dir", type=str, default="./dataset/32k", help="path to source dir")
14
+ args = parser.parse_args()
15
+
16
+ previous_config = json.load(open("configs/config.json", "rb"))
17
+
18
+ train = []
19
+ val = []
20
+ test = []
21
+ idx = 0
22
+ spk_dict = previous_config["spk"]
23
+ spk_id = max([i for i in spk_dict.values()]) + 1
24
+ for speaker in tqdm(os.listdir(args.source_dir)):
25
+ if speaker not in spk_dict.keys():
26
+ spk_dict[speaker] = spk_id
27
+ spk_id += 1
28
+ wavs = [os.path.join(args.source_dir, speaker, i)for i in os.listdir(os.path.join(args.source_dir, speaker))]
29
+ wavs = [i for i in wavs if i.endswith("wav")]
30
+ shuffle(wavs)
31
+ train += wavs[2:-10]
32
+ val += wavs[:2]
33
+ test += wavs[-10:]
34
+
35
+ assert previous_config["model"]["n_speakers"] > len(spk_dict.keys())
36
+ shuffle(train)
37
+ shuffle(val)
38
+ shuffle(test)
39
+
40
+ print("Writing", args.train_list)
41
+ with open(args.train_list, "w") as f:
42
+ for fname in tqdm(train):
43
+ wavpath = fname
44
+ f.write(wavpath + "\n")
45
+
46
+ print("Writing", args.val_list)
47
+ with open(args.val_list, "w") as f:
48
+ for fname in tqdm(val):
49
+ wavpath = fname
50
+ f.write(wavpath + "\n")
51
+
52
+ print("Writing", args.test_list)
53
+ with open(args.test_list, "w") as f:
54
+ for fname in tqdm(test):
55
+ wavpath = fname
56
+ f.write(wavpath + "\n")
57
+
58
+ previous_config["spk"] = spk_dict
59
+
60
+ print("Writing configs/config.json")
61
+ with open("configs/config.json", "w") as f:
62
+ json.dump(previous_config, f, indent=2)
attentions.py ADDED
@@ -0,0 +1,303 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import copy
2
+ import math
3
+ import numpy as np
4
+ import torch
5
+ from torch import nn
6
+ from torch.nn import functional as F
7
+
8
+ import commons
9
+ import modules
10
+ from modules import LayerNorm
11
+
12
+
13
+ class Encoder(nn.Module):
14
+ def __init__(self, hidden_channels, filter_channels, n_heads, n_layers, kernel_size=1, p_dropout=0., window_size=4, **kwargs):
15
+ super().__init__()
16
+ self.hidden_channels = hidden_channels
17
+ self.filter_channels = filter_channels
18
+ self.n_heads = n_heads
19
+ self.n_layers = n_layers
20
+ self.kernel_size = kernel_size
21
+ self.p_dropout = p_dropout
22
+ self.window_size = window_size
23
+
24
+ self.drop = nn.Dropout(p_dropout)
25
+ self.attn_layers = nn.ModuleList()
26
+ self.norm_layers_1 = nn.ModuleList()
27
+ self.ffn_layers = nn.ModuleList()
28
+ self.norm_layers_2 = nn.ModuleList()
29
+ for i in range(self.n_layers):
30
+ self.attn_layers.append(MultiHeadAttention(hidden_channels, hidden_channels, n_heads, p_dropout=p_dropout, window_size=window_size))
31
+ self.norm_layers_1.append(LayerNorm(hidden_channels))
32
+ self.ffn_layers.append(FFN(hidden_channels, hidden_channels, filter_channels, kernel_size, p_dropout=p_dropout))
33
+ self.norm_layers_2.append(LayerNorm(hidden_channels))
34
+
35
+ def forward(self, x, x_mask):
36
+ attn_mask = x_mask.unsqueeze(2) * x_mask.unsqueeze(-1)
37
+ x = x * x_mask
38
+ for i in range(self.n_layers):
39
+ y = self.attn_layers[i](x, x, attn_mask)
40
+ y = self.drop(y)
41
+ x = self.norm_layers_1[i](x + y)
42
+
43
+ y = self.ffn_layers[i](x, x_mask)
44
+ y = self.drop(y)
45
+ x = self.norm_layers_2[i](x + y)
46
+ x = x * x_mask
47
+ return x
48
+
49
+
50
+ class Decoder(nn.Module):
51
+ def __init__(self, hidden_channels, filter_channels, n_heads, n_layers, kernel_size=1, p_dropout=0., proximal_bias=False, proximal_init=True, **kwargs):
52
+ super().__init__()
53
+ self.hidden_channels = hidden_channels
54
+ self.filter_channels = filter_channels
55
+ self.n_heads = n_heads
56
+ self.n_layers = n_layers
57
+ self.kernel_size = kernel_size
58
+ self.p_dropout = p_dropout
59
+ self.proximal_bias = proximal_bias
60
+ self.proximal_init = proximal_init
61
+
62
+ self.drop = nn.Dropout(p_dropout)
63
+ self.self_attn_layers = nn.ModuleList()
64
+ self.norm_layers_0 = nn.ModuleList()
65
+ self.encdec_attn_layers = nn.ModuleList()
66
+ self.norm_layers_1 = nn.ModuleList()
67
+ self.ffn_layers = nn.ModuleList()
68
+ self.norm_layers_2 = nn.ModuleList()
69
+ for i in range(self.n_layers):
70
+ self.self_attn_layers.append(MultiHeadAttention(hidden_channels, hidden_channels, n_heads, p_dropout=p_dropout, proximal_bias=proximal_bias, proximal_init=proximal_init))
71
+ self.norm_layers_0.append(LayerNorm(hidden_channels))
72
+ self.encdec_attn_layers.append(MultiHeadAttention(hidden_channels, hidden_channels, n_heads, p_dropout=p_dropout))
73
+ self.norm_layers_1.append(LayerNorm(hidden_channels))
74
+ self.ffn_layers.append(FFN(hidden_channels, hidden_channels, filter_channels, kernel_size, p_dropout=p_dropout, causal=True))
75
+ self.norm_layers_2.append(LayerNorm(hidden_channels))
76
+
77
+ def forward(self, x, x_mask, h, h_mask):
78
+ """
79
+ x: decoder input
80
+ h: encoder output
81
+ """
82
+ self_attn_mask = commons.subsequent_mask(x_mask.size(2)).to(device=x.device, dtype=x.dtype)
83
+ encdec_attn_mask = h_mask.unsqueeze(2) * x_mask.unsqueeze(-1)
84
+ x = x * x_mask
85
+ for i in range(self.n_layers):
86
+ y = self.self_attn_layers[i](x, x, self_attn_mask)
87
+ y = self.drop(y)
88
+ x = self.norm_layers_0[i](x + y)
89
+
90
+ y = self.encdec_attn_layers[i](x, h, encdec_attn_mask)
91
+ y = self.drop(y)
92
+ x = self.norm_layers_1[i](x + y)
93
+
94
+ y = self.ffn_layers[i](x, x_mask)
95
+ y = self.drop(y)
96
+ x = self.norm_layers_2[i](x + y)
97
+ x = x * x_mask
98
+ return x
99
+
100
+
101
+ class MultiHeadAttention(nn.Module):
102
+ def __init__(self, channels, out_channels, n_heads, p_dropout=0., window_size=None, heads_share=True, block_length=None, proximal_bias=False, proximal_init=False):
103
+ super().__init__()
104
+ assert channels % n_heads == 0
105
+
106
+ self.channels = channels
107
+ self.out_channels = out_channels
108
+ self.n_heads = n_heads
109
+ self.p_dropout = p_dropout
110
+ self.window_size = window_size
111
+ self.heads_share = heads_share
112
+ self.block_length = block_length
113
+ self.proximal_bias = proximal_bias
114
+ self.proximal_init = proximal_init
115
+ self.attn = None
116
+
117
+ self.k_channels = channels // n_heads
118
+ self.conv_q = nn.Conv1d(channels, channels, 1)
119
+ self.conv_k = nn.Conv1d(channels, channels, 1)
120
+ self.conv_v = nn.Conv1d(channels, channels, 1)
121
+ self.conv_o = nn.Conv1d(channels, out_channels, 1)
122
+ self.drop = nn.Dropout(p_dropout)
123
+
124
+ if window_size is not None:
125
+ n_heads_rel = 1 if heads_share else n_heads
126
+ rel_stddev = self.k_channels**-0.5
127
+ self.emb_rel_k = nn.Parameter(torch.randn(n_heads_rel, window_size * 2 + 1, self.k_channels) * rel_stddev)
128
+ self.emb_rel_v = nn.Parameter(torch.randn(n_heads_rel, window_size * 2 + 1, self.k_channels) * rel_stddev)
129
+
130
+ nn.init.xavier_uniform_(self.conv_q.weight)
131
+ nn.init.xavier_uniform_(self.conv_k.weight)
132
+ nn.init.xavier_uniform_(self.conv_v.weight)
133
+ if proximal_init:
134
+ with torch.no_grad():
135
+ self.conv_k.weight.copy_(self.conv_q.weight)
136
+ self.conv_k.bias.copy_(self.conv_q.bias)
137
+
138
+ def forward(self, x, c, attn_mask=None):
139
+ q = self.conv_q(x)
140
+ k = self.conv_k(c)
141
+ v = self.conv_v(c)
142
+
143
+ x, self.attn = self.attention(q, k, v, mask=attn_mask)
144
+
145
+ x = self.conv_o(x)
146
+ return x
147
+
148
+ def attention(self, query, key, value, mask=None):
149
+ # reshape [b, d, t] -> [b, n_h, t, d_k]
150
+ b, d, t_s, t_t = (*key.size(), query.size(2))
151
+ query = query.view(b, self.n_heads, self.k_channels, t_t).transpose(2, 3)
152
+ key = key.view(b, self.n_heads, self.k_channels, t_s).transpose(2, 3)
153
+ value = value.view(b, self.n_heads, self.k_channels, t_s).transpose(2, 3)
154
+
155
+ scores = torch.matmul(query / math.sqrt(self.k_channels), key.transpose(-2, -1))
156
+ if self.window_size is not None:
157
+ assert t_s == t_t, "Relative attention is only available for self-attention."
158
+ key_relative_embeddings = self._get_relative_embeddings(self.emb_rel_k, t_s)
159
+ rel_logits = self._matmul_with_relative_keys(query /math.sqrt(self.k_channels), key_relative_embeddings)
160
+ scores_local = self._relative_position_to_absolute_position(rel_logits)
161
+ scores = scores + scores_local
162
+ if self.proximal_bias:
163
+ assert t_s == t_t, "Proximal bias is only available for self-attention."
164
+ scores = scores + self._attention_bias_proximal(t_s).to(device=scores.device, dtype=scores.dtype)
165
+ if mask is not None:
166
+ scores = scores.masked_fill(mask == 0, -1e4)
167
+ if self.block_length is not None:
168
+ assert t_s == t_t, "Local attention is only available for self-attention."
169
+ block_mask = torch.ones_like(scores).triu(-self.block_length).tril(self.block_length)
170
+ scores = scores.masked_fill(block_mask == 0, -1e4)
171
+ p_attn = F.softmax(scores, dim=-1) # [b, n_h, t_t, t_s]
172
+ p_attn = self.drop(p_attn)
173
+ output = torch.matmul(p_attn, value)
174
+ if self.window_size is not None:
175
+ relative_weights = self._absolute_position_to_relative_position(p_attn)
176
+ value_relative_embeddings = self._get_relative_embeddings(self.emb_rel_v, t_s)
177
+ output = output + self._matmul_with_relative_values(relative_weights, value_relative_embeddings)
178
+ output = output.transpose(2, 3).contiguous().view(b, d, t_t) # [b, n_h, t_t, d_k] -> [b, d, t_t]
179
+ return output, p_attn
180
+
181
+ def _matmul_with_relative_values(self, x, y):
182
+ """
183
+ x: [b, h, l, m]
184
+ y: [h or 1, m, d]
185
+ ret: [b, h, l, d]
186
+ """
187
+ ret = torch.matmul(x, y.unsqueeze(0))
188
+ return ret
189
+
190
+ def _matmul_with_relative_keys(self, x, y):
191
+ """
192
+ x: [b, h, l, d]
193
+ y: [h or 1, m, d]
194
+ ret: [b, h, l, m]
195
+ """
196
+ ret = torch.matmul(x, y.unsqueeze(0).transpose(-2, -1))
197
+ return ret
198
+
199
+ def _get_relative_embeddings(self, relative_embeddings, length):
200
+ max_relative_position = 2 * self.window_size + 1
201
+ # Pad first before slice to avoid using cond ops.
202
+ pad_length = max(length - (self.window_size + 1), 0)
203
+ slice_start_position = max((self.window_size + 1) - length, 0)
204
+ slice_end_position = slice_start_position + 2 * length - 1
205
+ if pad_length > 0:
206
+ padded_relative_embeddings = F.pad(
207
+ relative_embeddings,
208
+ commons.convert_pad_shape([[0, 0], [pad_length, pad_length], [0, 0]]))
209
+ else:
210
+ padded_relative_embeddings = relative_embeddings
211
+ used_relative_embeddings = padded_relative_embeddings[:,slice_start_position:slice_end_position]
212
+ return used_relative_embeddings
213
+
214
+ def _relative_position_to_absolute_position(self, x):
215
+ """
216
+ x: [b, h, l, 2*l-1]
217
+ ret: [b, h, l, l]
218
+ """
219
+ batch, heads, length, _ = x.size()
220
+ # Concat columns of pad to shift from relative to absolute indexing.
221
+ x = F.pad(x, commons.convert_pad_shape([[0,0],[0,0],[0,0],[0,1]]))
222
+
223
+ # Concat extra elements so to add up to shape (len+1, 2*len-1).
224
+ x_flat = x.view([batch, heads, length * 2 * length])
225
+ x_flat = F.pad(x_flat, commons.convert_pad_shape([[0,0],[0,0],[0,length-1]]))
226
+
227
+ # Reshape and slice out the padded elements.
228
+ x_final = x_flat.view([batch, heads, length+1, 2*length-1])[:, :, :length, length-1:]
229
+ return x_final
230
+
231
+ def _absolute_position_to_relative_position(self, x):
232
+ """
233
+ x: [b, h, l, l]
234
+ ret: [b, h, l, 2*l-1]
235
+ """
236
+ batch, heads, length, _ = x.size()
237
+ # padd along column
238
+ x = F.pad(x, commons.convert_pad_shape([[0, 0], [0, 0], [0, 0], [0, length-1]]))
239
+ x_flat = x.view([batch, heads, length**2 + length*(length -1)])
240
+ # add 0's in the beginning that will skew the elements after reshape
241
+ x_flat = F.pad(x_flat, commons.convert_pad_shape([[0, 0], [0, 0], [length, 0]]))
242
+ x_final = x_flat.view([batch, heads, length, 2*length])[:,:,:,1:]
243
+ return x_final
244
+
245
+ def _attention_bias_proximal(self, length):
246
+ """Bias for self-attention to encourage attention to close positions.
247
+ Args:
248
+ length: an integer scalar.
249
+ Returns:
250
+ a Tensor with shape [1, 1, length, length]
251
+ """
252
+ r = torch.arange(length, dtype=torch.float32)
253
+ diff = torch.unsqueeze(r, 0) - torch.unsqueeze(r, 1)
254
+ return torch.unsqueeze(torch.unsqueeze(-torch.log1p(torch.abs(diff)), 0), 0)
255
+
256
+
257
+ class FFN(nn.Module):
258
+ def __init__(self, in_channels, out_channels, filter_channels, kernel_size, p_dropout=0., activation=None, causal=False):
259
+ super().__init__()
260
+ self.in_channels = in_channels
261
+ self.out_channels = out_channels
262
+ self.filter_channels = filter_channels
263
+ self.kernel_size = kernel_size
264
+ self.p_dropout = p_dropout
265
+ self.activation = activation
266
+ self.causal = causal
267
+
268
+ if causal:
269
+ self.padding = self._causal_padding
270
+ else:
271
+ self.padding = self._same_padding
272
+
273
+ self.conv_1 = nn.Conv1d(in_channels, filter_channels, kernel_size)
274
+ self.conv_2 = nn.Conv1d(filter_channels, out_channels, kernel_size)
275
+ self.drop = nn.Dropout(p_dropout)
276
+
277
+ def forward(self, x, x_mask):
278
+ x = self.conv_1(self.padding(x * x_mask))
279
+ if self.activation == "gelu":
280
+ x = x * torch.sigmoid(1.702 * x)
281
+ else:
282
+ x = torch.relu(x)
283
+ x = self.drop(x)
284
+ x = self.conv_2(self.padding(x * x_mask))
285
+ return x * x_mask
286
+
287
+ def _causal_padding(self, x):
288
+ if self.kernel_size == 1:
289
+ return x
290
+ pad_l = self.kernel_size - 1
291
+ pad_r = 0
292
+ padding = [[0, 0], [0, 0], [pad_l, pad_r]]
293
+ x = F.pad(x, commons.convert_pad_shape(padding))
294
+ return x
295
+
296
+ def _same_padding(self, x):
297
+ if self.kernel_size == 1:
298
+ return x
299
+ pad_l = (self.kernel_size - 1) // 2
300
+ pad_r = self.kernel_size // 2
301
+ padding = [[0, 0], [0, 0], [pad_l, pad_r]]
302
+ x = F.pad(x, commons.convert_pad_shape(padding))
303
+ return x
commons.py ADDED
@@ -0,0 +1,188 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import math
2
+ import numpy as np
3
+ import torch
4
+ from torch import nn
5
+ from torch.nn import functional as F
6
+
7
+ def slice_pitch_segments(x, ids_str, segment_size=4):
8
+ ret = torch.zeros_like(x[:, :segment_size])
9
+ for i in range(x.size(0)):
10
+ idx_str = ids_str[i]
11
+ idx_end = idx_str + segment_size
12
+ ret[i] = x[i, idx_str:idx_end]
13
+ return ret
14
+
15
+ def rand_slice_segments_with_pitch(x, pitch, x_lengths=None, segment_size=4):
16
+ b, d, t = x.size()
17
+ if x_lengths is None:
18
+ x_lengths = t
19
+ ids_str_max = x_lengths - segment_size + 1
20
+ ids_str = (torch.rand([b]).to(device=x.device) * ids_str_max).to(dtype=torch.long)
21
+ ret = slice_segments(x, ids_str, segment_size)
22
+ ret_pitch = slice_pitch_segments(pitch, ids_str, segment_size)
23
+ return ret, ret_pitch, ids_str
24
+
25
+ def init_weights(m, mean=0.0, std=0.01):
26
+ classname = m.__class__.__name__
27
+ if classname.find("Conv") != -1:
28
+ m.weight.data.normal_(mean, std)
29
+
30
+
31
+ def get_padding(kernel_size, dilation=1):
32
+ return int((kernel_size*dilation - dilation)/2)
33
+
34
+
35
+ def convert_pad_shape(pad_shape):
36
+ l = pad_shape[::-1]
37
+ pad_shape = [item for sublist in l for item in sublist]
38
+ return pad_shape
39
+
40
+
41
+ def intersperse(lst, item):
42
+ result = [item] * (len(lst) * 2 + 1)
43
+ result[1::2] = lst
44
+ return result
45
+
46
+
47
+ def kl_divergence(m_p, logs_p, m_q, logs_q):
48
+ """KL(P||Q)"""
49
+ kl = (logs_q - logs_p) - 0.5
50
+ kl += 0.5 * (torch.exp(2. * logs_p) + ((m_p - m_q)**2)) * torch.exp(-2. * logs_q)
51
+ return kl
52
+
53
+
54
+ def rand_gumbel(shape):
55
+ """Sample from the Gumbel distribution, protect from overflows."""
56
+ uniform_samples = torch.rand(shape) * 0.99998 + 0.00001
57
+ return -torch.log(-torch.log(uniform_samples))
58
+
59
+
60
+ def rand_gumbel_like(x):
61
+ g = rand_gumbel(x.size()).to(dtype=x.dtype, device=x.device)
62
+ return g
63
+
64
+
65
+ def slice_segments(x, ids_str, segment_size=4):
66
+ ret = torch.zeros_like(x[:, :, :segment_size])
67
+ for i in range(x.size(0)):
68
+ idx_str = ids_str[i]
69
+ idx_end = idx_str + segment_size
70
+ ret[i] = x[i, :, idx_str:idx_end]
71
+ return ret
72
+
73
+
74
+ def rand_slice_segments(x, x_lengths=None, segment_size=4):
75
+ b, d, t = x.size()
76
+ if x_lengths is None:
77
+ x_lengths = t
78
+ ids_str_max = x_lengths - segment_size + 1
79
+ ids_str = (torch.rand([b]).to(device=x.device) * ids_str_max).to(dtype=torch.long)
80
+ ret = slice_segments(x, ids_str, segment_size)
81
+ return ret, ids_str
82
+
83
+
84
+ def rand_spec_segments(x, x_lengths=None, segment_size=4):
85
+ b, d, t = x.size()
86
+ if x_lengths is None:
87
+ x_lengths = t
88
+ ids_str_max = x_lengths - segment_size
89
+ ids_str = (torch.rand([b]).to(device=x.device) * ids_str_max).to(dtype=torch.long)
90
+ ret = slice_segments(x, ids_str, segment_size)
91
+ return ret, ids_str
92
+
93
+
94
+ def get_timing_signal_1d(
95
+ length, channels, min_timescale=1.0, max_timescale=1.0e4):
96
+ position = torch.arange(length, dtype=torch.float)
97
+ num_timescales = channels // 2
98
+ log_timescale_increment = (
99
+ math.log(float(max_timescale) / float(min_timescale)) /
100
+ (num_timescales - 1))
101
+ inv_timescales = min_timescale * torch.exp(
102
+ torch.arange(num_timescales, dtype=torch.float) * -log_timescale_increment)
103
+ scaled_time = position.unsqueeze(0) * inv_timescales.unsqueeze(1)
104
+ signal = torch.cat([torch.sin(scaled_time), torch.cos(scaled_time)], 0)
105
+ signal = F.pad(signal, [0, 0, 0, channels % 2])
106
+ signal = signal.view(1, channels, length)
107
+ return signal
108
+
109
+
110
+ def add_timing_signal_1d(x, min_timescale=1.0, max_timescale=1.0e4):
111
+ b, channels, length = x.size()
112
+ signal = get_timing_signal_1d(length, channels, min_timescale, max_timescale)
113
+ return x + signal.to(dtype=x.dtype, device=x.device)
114
+
115
+
116
+ def cat_timing_signal_1d(x, min_timescale=1.0, max_timescale=1.0e4, axis=1):
117
+ b, channels, length = x.size()
118
+ signal = get_timing_signal_1d(length, channels, min_timescale, max_timescale)
119
+ return torch.cat([x, signal.to(dtype=x.dtype, device=x.device)], axis)
120
+
121
+
122
+ def subsequent_mask(length):
123
+ mask = torch.tril(torch.ones(length, length)).unsqueeze(0).unsqueeze(0)
124
+ return mask
125
+
126
+
127
+ @torch.jit.script
128
+ def fused_add_tanh_sigmoid_multiply(input_a, input_b, n_channels):
129
+ n_channels_int = n_channels[0]
130
+ in_act = input_a + input_b
131
+ t_act = torch.tanh(in_act[:, :n_channels_int, :])
132
+ s_act = torch.sigmoid(in_act[:, n_channels_int:, :])
133
+ acts = t_act * s_act
134
+ return acts
135
+
136
+
137
+ def convert_pad_shape(pad_shape):
138
+ l = pad_shape[::-1]
139
+ pad_shape = [item for sublist in l for item in sublist]
140
+ return pad_shape
141
+
142
+
143
+ def shift_1d(x):
144
+ x = F.pad(x, convert_pad_shape([[0, 0], [0, 0], [1, 0]]))[:, :, :-1]
145
+ return x
146
+
147
+
148
+ def sequence_mask(length, max_length=None):
149
+ if max_length is None:
150
+ max_length = length.max()
151
+ x = torch.arange(max_length, dtype=length.dtype, device=length.device)
152
+ return x.unsqueeze(0) < length.unsqueeze(1)
153
+
154
+
155
+ def generate_path(duration, mask):
156
+ """
157
+ duration: [b, 1, t_x]
158
+ mask: [b, 1, t_y, t_x]
159
+ """
160
+ device = duration.device
161
+
162
+ b, _, t_y, t_x = mask.shape
163
+ cum_duration = torch.cumsum(duration, -1)
164
+
165
+ cum_duration_flat = cum_duration.view(b * t_x)
166
+ path = sequence_mask(cum_duration_flat, t_y).to(mask.dtype)
167
+ path = path.view(b, t_x, t_y)
168
+ path = path - F.pad(path, convert_pad_shape([[0, 0], [1, 0], [0, 0]]))[:, :-1]
169
+ path = path.unsqueeze(1).transpose(2,3) * mask
170
+ return path
171
+
172
+
173
+ def clip_grad_value_(parameters, clip_value, norm_type=2):
174
+ if isinstance(parameters, torch.Tensor):
175
+ parameters = [parameters]
176
+ parameters = list(filter(lambda p: p.grad is not None, parameters))
177
+ norm_type = float(norm_type)
178
+ if clip_value is not None:
179
+ clip_value = float(clip_value)
180
+
181
+ total_norm = 0
182
+ for p in parameters:
183
+ param_norm = p.grad.data.norm(norm_type)
184
+ total_norm += param_norm.item() ** norm_type
185
+ if clip_value is not None:
186
+ p.grad.data.clamp_(min=-clip_value, max=clip_value)
187
+ total_norm = total_norm ** (1. / norm_type)
188
+ return total_norm
configs/config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ 请使用生成的config文件
data_utils.py ADDED
@@ -0,0 +1,154 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import time
2
+ import os
3
+ import random
4
+ import numpy as np
5
+ import torch
6
+ import torch.utils.data
7
+
8
+ import commons
9
+ from mel_processing import spectrogram_torch, spec_to_mel_torch
10
+ from utils import load_wav_to_torch, load_filepaths_and_text, transform
11
+
12
+ # import h5py
13
+
14
+
15
+ """Multi speaker version"""
16
+
17
+
18
+ class TextAudioSpeakerLoader(torch.utils.data.Dataset):
19
+ """
20
+ 1) loads audio, speaker_id, text pairs
21
+ 2) normalizes text and converts them to sequences of integers
22
+ 3) computes spectrograms from audio files.
23
+ """
24
+
25
+ def __init__(self, audiopaths, hparams):
26
+ self.audiopaths = load_filepaths_and_text(audiopaths)
27
+ self.max_wav_value = hparams.data.max_wav_value
28
+ self.sampling_rate = hparams.data.sampling_rate
29
+ self.filter_length = hparams.data.filter_length
30
+ self.hop_length = hparams.data.hop_length
31
+ self.win_length = hparams.data.win_length
32
+ self.sampling_rate = hparams.data.sampling_rate
33
+ self.use_sr = hparams.train.use_sr
34
+ self.spec_len = hparams.train.max_speclen
35
+ self.spk_map = hparams.spk
36
+
37
+ random.seed(1234)
38
+ random.shuffle(self.audiopaths)
39
+
40
+ def get_audio(self, filename):
41
+ filename = filename.replace("\\", "/")
42
+ audio, sampling_rate = load_wav_to_torch(filename)
43
+ if sampling_rate != self.sampling_rate:
44
+ raise ValueError("{} SR doesn't match target {} SR".format(
45
+ sampling_rate, self.sampling_rate))
46
+ audio_norm = audio / self.max_wav_value
47
+ audio_norm = audio_norm.unsqueeze(0)
48
+ spec_filename = filename.replace(".wav", ".spec.pt")
49
+ if os.path.exists(spec_filename):
50
+ spec = torch.load(spec_filename)
51
+ else:
52
+ spec = spectrogram_torch(audio_norm, self.filter_length,
53
+ self.sampling_rate, self.hop_length, self.win_length,
54
+ center=False)
55
+ spec = torch.squeeze(spec, 0)
56
+ torch.save(spec, spec_filename)
57
+
58
+ spk = filename.split("/")[-2]
59
+ spk = torch.LongTensor([self.spk_map[spk]])
60
+
61
+ c = torch.load(filename + ".soft.pt").squeeze(0)
62
+ c = torch.repeat_interleave(c, repeats=2, dim=1)
63
+
64
+ f0 = np.load(filename + ".f0.npy")
65
+ f0 = torch.FloatTensor(f0)
66
+ lmin = min(c.size(-1), spec.size(-1), f0.shape[0])
67
+ assert abs(c.size(-1) - spec.size(-1)) < 4, (c.size(-1), spec.size(-1), f0.shape, filename)
68
+ assert abs(lmin - spec.size(-1)) < 4, (c.size(-1), spec.size(-1), f0.shape)
69
+ assert abs(lmin - c.size(-1)) < 4, (c.size(-1), spec.size(-1), f0.shape)
70
+ spec, c, f0 = spec[:, :lmin], c[:, :lmin], f0[:lmin]
71
+ audio_norm = audio_norm[:, :lmin * self.hop_length]
72
+ _spec, _c, _audio_norm, _f0 = spec, c, audio_norm, f0
73
+ while spec.size(-1) < self.spec_len:
74
+ spec = torch.cat((spec, _spec), -1)
75
+ c = torch.cat((c, _c), -1)
76
+ f0 = torch.cat((f0, _f0), -1)
77
+ audio_norm = torch.cat((audio_norm, _audio_norm), -1)
78
+ start = random.randint(0, spec.size(-1) - self.spec_len)
79
+ end = start + self.spec_len
80
+ spec = spec[:, start:end]
81
+ c = c[:, start:end]
82
+ f0 = f0[start:end]
83
+ audio_norm = audio_norm[:, start * self.hop_length:end * self.hop_length]
84
+
85
+ return c, f0, spec, audio_norm, spk
86
+
87
+ def __getitem__(self, index):
88
+ return self.get_audio(self.audiopaths[index][0])
89
+
90
+ def __len__(self):
91
+ return len(self.audiopaths)
92
+
93
+
94
+ class EvalDataLoader(torch.utils.data.Dataset):
95
+ """
96
+ 1) loads audio, speaker_id, text pairs
97
+ 2) normalizes text and converts them to sequences of integers
98
+ 3) computes spectrograms from audio files.
99
+ """
100
+
101
+ def __init__(self, audiopaths, hparams):
102
+ self.audiopaths = load_filepaths_and_text(audiopaths)
103
+ self.max_wav_value = hparams.data.max_wav_value
104
+ self.sampling_rate = hparams.data.sampling_rate
105
+ self.filter_length = hparams.data.filter_length
106
+ self.hop_length = hparams.data.hop_length
107
+ self.win_length = hparams.data.win_length
108
+ self.sampling_rate = hparams.data.sampling_rate
109
+ self.use_sr = hparams.train.use_sr
110
+ self.audiopaths = self.audiopaths[:5]
111
+ self.spk_map = hparams.spk
112
+
113
+
114
+ def get_audio(self, filename):
115
+ filename = filename.replace("\\", "/")
116
+ audio, sampling_rate = load_wav_to_torch(filename)
117
+ if sampling_rate != self.sampling_rate:
118
+ raise ValueError("{} SR doesn't match target {} SR".format(
119
+ sampling_rate, self.sampling_rate))
120
+ audio_norm = audio / self.max_wav_value
121
+ audio_norm = audio_norm.unsqueeze(0)
122
+ spec_filename = filename.replace(".wav", ".spec.pt")
123
+ if os.path.exists(spec_filename):
124
+ spec = torch.load(spec_filename)
125
+ else:
126
+ spec = spectrogram_torch(audio_norm, self.filter_length,
127
+ self.sampling_rate, self.hop_length, self.win_length,
128
+ center=False)
129
+ spec = torch.squeeze(spec, 0)
130
+ torch.save(spec, spec_filename)
131
+
132
+ spk = filename.split("/")[-2]
133
+ spk = torch.LongTensor([self.spk_map[spk]])
134
+
135
+ c = torch.load(filename + ".soft.pt").squeeze(0)
136
+
137
+ c = torch.repeat_interleave(c, repeats=2, dim=1)
138
+
139
+ f0 = np.load(filename + ".f0.npy")
140
+ f0 = torch.FloatTensor(f0)
141
+ lmin = min(c.size(-1), spec.size(-1), f0.shape[0])
142
+ assert abs(c.size(-1) - spec.size(-1)) < 4, (c.size(-1), spec.size(-1), f0.shape)
143
+ assert abs(f0.shape[0] - spec.shape[-1]) < 4, (c.size(-1), spec.size(-1), f0.shape)
144
+ spec, c, f0 = spec[:, :lmin], c[:, :lmin], f0[:lmin]
145
+ audio_norm = audio_norm[:, :lmin * self.hop_length]
146
+
147
+ return c, f0, spec, audio_norm, spk
148
+
149
+ def __getitem__(self, index):
150
+ return self.get_audio(self.audiopaths[index][0])
151
+
152
+ def __len__(self):
153
+ return len(self.audiopaths)
154
+
dataset_raw/wav_structure.txt ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ 数据集准备
2
+
3
+ raw
4
+ ├───speaker0
5
+ │ ├───xxx1-xxx1.wav
6
+ │ ├───...
7
+ │ └───Lxx-0xx8.wav
8
+ └───speaker1
9
+ ├───xx2-0xxx2.wav
10
+ ├───...
11
+ └───xxx7-xxx007.wav
12
+
13
+ 此外还需要编辑config.json
14
+
15
+ "n_speakers": 10
16
+
17
+ "spk":{
18
+ "speaker0": 0,
19
+ "speaker1": 1,
20
+ }
filelists/test.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ ./dataset/32k/yunhao/001829.wav
2
+ ./dataset/32k/yunhao/001827.wav
3
+ ./dataset/32k/jishuang/000104.wav
4
+ ./dataset/32k/nen/kne110_005.wav
5
+ ./dataset/32k/nen/kne110_004.wav
6
+ ./dataset/32k/jishuang/000223.wav
7
+ ./dataset/32k/yunhao/001828.wav
filelists/train.txt ADDED
File without changes
filelists/val.txt ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ ./dataset/32k/nen/kne110_005.wav
2
+ ./dataset/32k/yunhao/001827.wav
3
+ ./dataset/32k/jishuang/000104.wav
4
+ ./dataset/32k/jishuang/000223.wav
5
+ ./dataset/32k/nen/kne110_004.wav
6
+ ./dataset/32k/yunhao/001828.wav
flask_api.py ADDED
@@ -0,0 +1,56 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import io
2
+ import logging
3
+
4
+ import soundfile
5
+ import torch
6
+ import torchaudio
7
+ from flask import Flask, request, send_file
8
+ from flask_cors import CORS
9
+
10
+ from inference.infer_tool import Svc, RealTimeVC
11
+
12
+ app = Flask(__name__)
13
+
14
+ CORS(app)
15
+
16
+ logging.getLogger('numba').setLevel(logging.WARNING)
17
+
18
+
19
+ @app.route("/voiceChangeModel", methods=["POST"])
20
+ def voice_change_model():
21
+ request_form = request.form
22
+ wave_file = request.files.get("sample", None)
23
+ # 变调信息
24
+ f_pitch_change = float(request_form.get("fPitchChange", 0))
25
+ # DAW所需的采样率
26
+ daw_sample = int(float(request_form.get("sampleRate", 0)))
27
+ speaker_id = int(float(request_form.get("sSpeakId", 0)))
28
+ # http获得wav文件并转换
29
+ input_wav_path = io.BytesIO(wave_file.read())
30
+
31
+ # 模型推理
32
+ if raw_infer:
33
+ out_audio, out_sr = svc_model.infer(speaker_id, f_pitch_change, input_wav_path)
34
+ tar_audio = torchaudio.functional.resample(out_audio, svc_model.target_sample, daw_sample)
35
+ else:
36
+ out_audio = svc.process(svc_model, speaker_id, f_pitch_change, input_wav_path)
37
+ tar_audio = torchaudio.functional.resample(torch.from_numpy(out_audio), svc_model.target_sample, daw_sample)
38
+ # 返回音频
39
+ out_wav_path = io.BytesIO()
40
+ soundfile.write(out_wav_path, tar_audio.cpu().numpy(), daw_sample, format="wav")
41
+ out_wav_path.seek(0)
42
+ return send_file(out_wav_path, download_name="temp.wav", as_attachment=True)
43
+
44
+
45
+ if __name__ == '__main__':
46
+ # 启用则为直接切片合成,False为交叉淡化方式
47
+ # vst插件调整0.3-0.5s切片时间可以降低延迟,直接切片方法会有连接处爆音、交叉淡化会有轻微重叠声音
48
+ # 自行选择能接受的方法,或将vst最大切片时间调整为1s,此处设为Ture,延迟大音质稳定一些
49
+ raw_infer = True
50
+ # 每个模型和config是唯一对应的
51
+ model_name = "logs/32k/G_174000-Copy1.pth"
52
+ config_name = "configs/config.json"
53
+ svc_model = Svc(model_name, config_name)
54
+ svc = RealTimeVC()
55
+ # 此处与vst插件对应,不建议更改
56
+ app.run(port=6842, host="0.0.0.0", debug=False, threaded=False)
hubert/__init__.py ADDED
File without changes
hubert/hubert_model.py ADDED
@@ -0,0 +1,222 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import copy
2
+ import random
3
+ from typing import Optional, Tuple
4
+
5
+ import torch
6
+ import torch.nn as nn
7
+ import torch.nn.functional as t_func
8
+ from torch.nn.modules.utils import consume_prefix_in_state_dict_if_present
9
+
10
+
11
+ class Hubert(nn.Module):
12
+ def __init__(self, num_label_embeddings: int = 100, mask: bool = True):
13
+ super().__init__()
14
+ self._mask = mask
15
+ self.feature_extractor = FeatureExtractor()
16
+ self.feature_projection = FeatureProjection()
17
+ self.positional_embedding = PositionalConvEmbedding()
18
+ self.norm = nn.LayerNorm(768)
19
+ self.dropout = nn.Dropout(0.1)
20
+ self.encoder = TransformerEncoder(
21
+ nn.TransformerEncoderLayer(
22
+ 768, 12, 3072, activation="gelu", batch_first=True
23
+ ),
24
+ 12,
25
+ )
26
+ self.proj = nn.Linear(768, 256)
27
+
28
+ self.masked_spec_embed = nn.Parameter(torch.FloatTensor(768).uniform_())
29
+ self.label_embedding = nn.Embedding(num_label_embeddings, 256)
30
+
31
+ def mask(self, x: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
32
+ mask = None
33
+ if self.training and self._mask:
34
+ mask = _compute_mask((x.size(0), x.size(1)), 0.8, 10, x.device, 2)
35
+ x[mask] = self.masked_spec_embed.to(x.dtype)
36
+ return x, mask
37
+
38
+ def encode(
39
+ self, x: torch.Tensor, layer: Optional[int] = None
40
+ ) -> Tuple[torch.Tensor, torch.Tensor]:
41
+ x = self.feature_extractor(x)
42
+ x = self.feature_projection(x.transpose(1, 2))
43
+ x, mask = self.mask(x)
44
+ x = x + self.positional_embedding(x)
45
+ x = self.dropout(self.norm(x))
46
+ x = self.encoder(x, output_layer=layer)
47
+ return x, mask
48
+
49
+ def logits(self, x: torch.Tensor) -> torch.Tensor:
50
+ logits = torch.cosine_similarity(
51
+ x.unsqueeze(2),
52
+ self.label_embedding.weight.unsqueeze(0).unsqueeze(0),
53
+ dim=-1,
54
+ )
55
+ return logits / 0.1
56
+
57
+ def forward(self, x: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
58
+ x, mask = self.encode(x)
59
+ x = self.proj(x)
60
+ logits = self.logits(x)
61
+ return logits, mask
62
+
63
+
64
+ class HubertSoft(Hubert):
65
+ def __init__(self):
66
+ super().__init__()
67
+
68
+ @torch.inference_mode()
69
+ def units(self, wav: torch.Tensor) -> torch.Tensor:
70
+ wav = t_func.pad(wav, ((400 - 320) // 2, (400 - 320) // 2))
71
+ x, _ = self.encode(wav)
72
+ return self.proj(x)
73
+
74
+
75
+ class FeatureExtractor(nn.Module):
76
+ def __init__(self):
77
+ super().__init__()
78
+ self.conv0 = nn.Conv1d(1, 512, 10, 5, bias=False)
79
+ self.norm0 = nn.GroupNorm(512, 512)
80
+ self.conv1 = nn.Conv1d(512, 512, 3, 2, bias=False)
81
+ self.conv2 = nn.Conv1d(512, 512, 3, 2, bias=False)
82
+ self.conv3 = nn.Conv1d(512, 512, 3, 2, bias=False)
83
+ self.conv4 = nn.Conv1d(512, 512, 3, 2, bias=False)
84
+ self.conv5 = nn.Conv1d(512, 512, 2, 2, bias=False)
85
+ self.conv6 = nn.Conv1d(512, 512, 2, 2, bias=False)
86
+
87
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
88
+ x = t_func.gelu(self.norm0(self.conv0(x)))
89
+ x = t_func.gelu(self.conv1(x))
90
+ x = t_func.gelu(self.conv2(x))
91
+ x = t_func.gelu(self.conv3(x))
92
+ x = t_func.gelu(self.conv4(x))
93
+ x = t_func.gelu(self.conv5(x))
94
+ x = t_func.gelu(self.conv6(x))
95
+ return x
96
+
97
+
98
+ class FeatureProjection(nn.Module):
99
+ def __init__(self):
100
+ super().__init__()
101
+ self.norm = nn.LayerNorm(512)
102
+ self.projection = nn.Linear(512, 768)
103
+ self.dropout = nn.Dropout(0.1)
104
+
105
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
106
+ x = self.norm(x)
107
+ x = self.projection(x)
108
+ x = self.dropout(x)
109
+ return x
110
+
111
+
112
+ class PositionalConvEmbedding(nn.Module):
113
+ def __init__(self):
114
+ super().__init__()
115
+ self.conv = nn.Conv1d(
116
+ 768,
117
+ 768,
118
+ kernel_size=128,
119
+ padding=128 // 2,
120
+ groups=16,
121
+ )
122
+ self.conv = nn.utils.weight_norm(self.conv, name="weight", dim=2)
123
+
124
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
125
+ x = self.conv(x.transpose(1, 2))
126
+ x = t_func.gelu(x[:, :, :-1])
127
+ return x.transpose(1, 2)
128
+
129
+
130
+ class TransformerEncoder(nn.Module):
131
+ def __init__(
132
+ self, encoder_layer: nn.TransformerEncoderLayer, num_layers: int
133
+ ) -> None:
134
+ super(TransformerEncoder, self).__init__()
135
+ self.layers = nn.ModuleList(
136
+ [copy.deepcopy(encoder_layer) for _ in range(num_layers)]
137
+ )
138
+ self.num_layers = num_layers
139
+
140
+ def forward(
141
+ self,
142
+ src: torch.Tensor,
143
+ mask: torch.Tensor = None,
144
+ src_key_padding_mask: torch.Tensor = None,
145
+ output_layer: Optional[int] = None,
146
+ ) -> torch.Tensor:
147
+ output = src
148
+ for layer in self.layers[:output_layer]:
149
+ output = layer(
150
+ output, src_mask=mask, src_key_padding_mask=src_key_padding_mask
151
+ )
152
+ return output
153
+
154
+
155
+ def _compute_mask(
156
+ shape: Tuple[int, int],
157
+ mask_prob: float,
158
+ mask_length: int,
159
+ device: torch.device,
160
+ min_masks: int = 0,
161
+ ) -> torch.Tensor:
162
+ batch_size, sequence_length = shape
163
+
164
+ if mask_length < 1:
165
+ raise ValueError("`mask_length` has to be bigger than 0.")
166
+
167
+ if mask_length > sequence_length:
168
+ raise ValueError(
169
+ f"`mask_length` has to be smaller than `sequence_length`, but got `mask_length`: {mask_length} and `sequence_length`: {sequence_length}`"
170
+ )
171
+
172
+ # compute number of masked spans in batch
173
+ num_masked_spans = int(mask_prob * sequence_length / mask_length + random.random())
174
+ num_masked_spans = max(num_masked_spans, min_masks)
175
+
176
+ # make sure num masked indices <= sequence_length
177
+ if num_masked_spans * mask_length > sequence_length:
178
+ num_masked_spans = sequence_length // mask_length
179
+
180
+ # SpecAugment mask to fill
181
+ mask = torch.zeros((batch_size, sequence_length), device=device, dtype=torch.bool)
182
+
183
+ # uniform distribution to sample from, make sure that offset samples are < sequence_length
184
+ uniform_dist = torch.ones(
185
+ (batch_size, sequence_length - (mask_length - 1)), device=device
186
+ )
187
+
188
+ # get random indices to mask
189
+ mask_indices = torch.multinomial(uniform_dist, num_masked_spans)
190
+
191
+ # expand masked indices to masked spans
192
+ mask_indices = (
193
+ mask_indices.unsqueeze(dim=-1)
194
+ .expand((batch_size, num_masked_spans, mask_length))
195
+ .reshape(batch_size, num_masked_spans * mask_length)
196
+ )
197
+ offsets = (
198
+ torch.arange(mask_length, device=device)[None, None, :]
199
+ .expand((batch_size, num_masked_spans, mask_length))
200
+ .reshape(batch_size, num_masked_spans * mask_length)
201
+ )
202
+ mask_idxs = mask_indices + offsets
203
+
204
+ # scatter indices to mask
205
+ mask = mask.scatter(1, mask_idxs, True)
206
+
207
+ return mask
208
+
209
+
210
+ def hubert_soft(
211
+ path: str,
212
+ ) -> HubertSoft:
213
+ r"""HuBERT-Soft from `"A Comparison of Discrete and Soft Speech Units for Improved Voice Conversion"`.
214
+ Args:
215
+ path (str): path of a pretrained model
216
+ """
217
+ hubert = HubertSoft()
218
+ checkpoint = torch.load(path)
219
+ consume_prefix_in_state_dict_if_present(checkpoint, "module.")
220
+ hubert.load_state_dict(checkpoint)
221
+ hubert.eval()
222
+ return hubert
hubert/hubert_model_onnx.py ADDED
@@ -0,0 +1,217 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import copy
2
+ import random
3
+ from typing import Optional, Tuple
4
+
5
+ import torch
6
+ import torch.nn as nn
7
+ import torch.nn.functional as t_func
8
+ from torch.nn.modules.utils import consume_prefix_in_state_dict_if_present
9
+
10
+
11
+ class Hubert(nn.Module):
12
+ def __init__(self, num_label_embeddings: int = 100, mask: bool = True):
13
+ super().__init__()
14
+ self._mask = mask
15
+ self.feature_extractor = FeatureExtractor()
16
+ self.feature_projection = FeatureProjection()
17
+ self.positional_embedding = PositionalConvEmbedding()
18
+ self.norm = nn.LayerNorm(768)
19
+ self.dropout = nn.Dropout(0.1)
20
+ self.encoder = TransformerEncoder(
21
+ nn.TransformerEncoderLayer(
22
+ 768, 12, 3072, activation="gelu", batch_first=True
23
+ ),
24
+ 12,
25
+ )
26
+ self.proj = nn.Linear(768, 256)
27
+
28
+ self.masked_spec_embed = nn.Parameter(torch.FloatTensor(768).uniform_())
29
+ self.label_embedding = nn.Embedding(num_label_embeddings, 256)
30
+
31
+ def mask(self, x: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
32
+ mask = None
33
+ if self.training and self._mask:
34
+ mask = _compute_mask((x.size(0), x.size(1)), 0.8, 10, x.device, 2)
35
+ x[mask] = self.masked_spec_embed.to(x.dtype)
36
+ return x, mask
37
+
38
+ def encode(
39
+ self, x: torch.Tensor, layer: Optional[int] = None
40
+ ) -> Tuple[torch.Tensor, torch.Tensor]:
41
+ x = self.feature_extractor(x)
42
+ x = self.feature_projection(x.transpose(1, 2))
43
+ x, mask = self.mask(x)
44
+ x = x + self.positional_embedding(x)
45
+ x = self.dropout(self.norm(x))
46
+ x = self.encoder(x, output_layer=layer)
47
+ return x, mask
48
+
49
+ def logits(self, x: torch.Tensor) -> torch.Tensor:
50
+ logits = torch.cosine_similarity(
51
+ x.unsqueeze(2),
52
+ self.label_embedding.weight.unsqueeze(0).unsqueeze(0),
53
+ dim=-1,
54
+ )
55
+ return logits / 0.1
56
+
57
+
58
+ class HubertSoft(Hubert):
59
+ def __init__(self):
60
+ super().__init__()
61
+
62
+ def units(self, wav: torch.Tensor) -> torch.Tensor:
63
+ wav = t_func.pad(wav, ((400 - 320) // 2, (400 - 320) // 2))
64
+ x, _ = self.encode(wav)
65
+ return self.proj(x)
66
+
67
+ def forward(self, x):
68
+ return self.units(x)
69
+
70
+ class FeatureExtractor(nn.Module):
71
+ def __init__(self):
72
+ super().__init__()
73
+ self.conv0 = nn.Conv1d(1, 512, 10, 5, bias=False)
74
+ self.norm0 = nn.GroupNorm(512, 512)
75
+ self.conv1 = nn.Conv1d(512, 512, 3, 2, bias=False)
76
+ self.conv2 = nn.Conv1d(512, 512, 3, 2, bias=False)
77
+ self.conv3 = nn.Conv1d(512, 512, 3, 2, bias=False)
78
+ self.conv4 = nn.Conv1d(512, 512, 3, 2, bias=False)
79
+ self.conv5 = nn.Conv1d(512, 512, 2, 2, bias=False)
80
+ self.conv6 = nn.Conv1d(512, 512, 2, 2, bias=False)
81
+
82
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
83
+ x = t_func.gelu(self.norm0(self.conv0(x)))
84
+ x = t_func.gelu(self.conv1(x))
85
+ x = t_func.gelu(self.conv2(x))
86
+ x = t_func.gelu(self.conv3(x))
87
+ x = t_func.gelu(self.conv4(x))
88
+ x = t_func.gelu(self.conv5(x))
89
+ x = t_func.gelu(self.conv6(x))
90
+ return x
91
+
92
+
93
+ class FeatureProjection(nn.Module):
94
+ def __init__(self):
95
+ super().__init__()
96
+ self.norm = nn.LayerNorm(512)
97
+ self.projection = nn.Linear(512, 768)
98
+ self.dropout = nn.Dropout(0.1)
99
+
100
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
101
+ x = self.norm(x)
102
+ x = self.projection(x)
103
+ x = self.dropout(x)
104
+ return x
105
+
106
+
107
+ class PositionalConvEmbedding(nn.Module):
108
+ def __init__(self):
109
+ super().__init__()
110
+ self.conv = nn.Conv1d(
111
+ 768,
112
+ 768,
113
+ kernel_size=128,
114
+ padding=128 // 2,
115
+ groups=16,
116
+ )
117
+ self.conv = nn.utils.weight_norm(self.conv, name="weight", dim=2)
118
+
119
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
120
+ x = self.conv(x.transpose(1, 2))
121
+ x = t_func.gelu(x[:, :, :-1])
122
+ return x.transpose(1, 2)
123
+
124
+
125
+ class TransformerEncoder(nn.Module):
126
+ def __init__(
127
+ self, encoder_layer: nn.TransformerEncoderLayer, num_layers: int
128
+ ) -> None:
129
+ super(TransformerEncoder, self).__init__()
130
+ self.layers = nn.ModuleList(
131
+ [copy.deepcopy(encoder_layer) for _ in range(num_layers)]
132
+ )
133
+ self.num_layers = num_layers
134
+
135
+ def forward(
136
+ self,
137
+ src: torch.Tensor,
138
+ mask: torch.Tensor = None,
139
+ src_key_padding_mask: torch.Tensor = None,
140
+ output_layer: Optional[int] = None,
141
+ ) -> torch.Tensor:
142
+ output = src
143
+ for layer in self.layers[:output_layer]:
144
+ output = layer(
145
+ output, src_mask=mask, src_key_padding_mask=src_key_padding_mask
146
+ )
147
+ return output
148
+
149
+
150
+ def _compute_mask(
151
+ shape: Tuple[int, int],
152
+ mask_prob: float,
153
+ mask_length: int,
154
+ device: torch.device,
155
+ min_masks: int = 0,
156
+ ) -> torch.Tensor:
157
+ batch_size, sequence_length = shape
158
+
159
+ if mask_length < 1:
160
+ raise ValueError("`mask_length` has to be bigger than 0.")
161
+
162
+ if mask_length > sequence_length:
163
+ raise ValueError(
164
+ f"`mask_length` has to be smaller than `sequence_length`, but got `mask_length`: {mask_length} and `sequence_length`: {sequence_length}`"
165
+ )
166
+
167
+ # compute number of masked spans in batch
168
+ num_masked_spans = int(mask_prob * sequence_length / mask_length + random.random())
169
+ num_masked_spans = max(num_masked_spans, min_masks)
170
+
171
+ # make sure num masked indices <= sequence_length
172
+ if num_masked_spans * mask_length > sequence_length:
173
+ num_masked_spans = sequence_length // mask_length
174
+
175
+ # SpecAugment mask to fill
176
+ mask = torch.zeros((batch_size, sequence_length), device=device, dtype=torch.bool)
177
+
178
+ # uniform distribution to sample from, make sure that offset samples are < sequence_length
179
+ uniform_dist = torch.ones(
180
+ (batch_size, sequence_length - (mask_length - 1)), device=device
181
+ )
182
+
183
+ # get random indices to mask
184
+ mask_indices = torch.multinomial(uniform_dist, num_masked_spans)
185
+
186
+ # expand masked indices to masked spans
187
+ mask_indices = (
188
+ mask_indices.unsqueeze(dim=-1)
189
+ .expand((batch_size, num_masked_spans, mask_length))
190
+ .reshape(batch_size, num_masked_spans * mask_length)
191
+ )
192
+ offsets = (
193
+ torch.arange(mask_length, device=device)[None, None, :]
194
+ .expand((batch_size, num_masked_spans, mask_length))
195
+ .reshape(batch_size, num_masked_spans * mask_length)
196
+ )
197
+ mask_idxs = mask_indices + offsets
198
+
199
+ # scatter indices to mask
200
+ mask = mask.scatter(1, mask_idxs, True)
201
+
202
+ return mask
203
+
204
+
205
+ def hubert_soft(
206
+ path: str,
207
+ ) -> HubertSoft:
208
+ r"""HuBERT-Soft from `"A Comparison of Discrete and Soft Speech Units for Improved Voice Conversion"`.
209
+ Args:
210
+ path (str): path of a pretrained model
211
+ """
212
+ hubert = HubertSoft()
213
+ checkpoint = torch.load(path)
214
+ consume_prefix_in_state_dict_if_present(checkpoint, "module.")
215
+ hubert.load_state_dict(checkpoint)
216
+ hubert.eval()
217
+ return hubert
hubert/put_hubert_ckpt_here ADDED
File without changes
inference/__init__.py ADDED
File without changes
inference/infer_tool.py ADDED
@@ -0,0 +1,327 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import hashlib
2
+ import json
3
+ import logging
4
+ import os
5
+ import time
6
+ from pathlib import Path
7
+
8
+ import librosa
9
+ import maad
10
+ import numpy as np
11
+ # import onnxruntime
12
+ import parselmouth
13
+ import soundfile
14
+ import torch
15
+ import torchaudio
16
+
17
+ from hubert import hubert_model
18
+ import utils
19
+ from models import SynthesizerTrn
20
+
21
+ logging.getLogger('matplotlib').setLevel(logging.WARNING)
22
+
23
+
24
+ def read_temp(file_name):
25
+ if not os.path.exists(file_name):
26
+ with open(file_name, "w") as f:
27
+ f.write(json.dumps({"info": "temp_dict"}))
28
+ return {}
29
+ else:
30
+ try:
31
+ with open(file_name, "r") as f:
32
+ data = f.read()
33
+ data_dict = json.loads(data)
34
+ if os.path.getsize(file_name) > 50 * 1024 * 1024:
35
+ f_name = file_name.replace("\\", "/").split("/")[-1]
36
+ print(f"clean {f_name}")
37
+ for wav_hash in list(data_dict.keys()):
38
+ if int(time.time()) - int(data_dict[wav_hash]["time"]) > 14 * 24 * 3600:
39
+ del data_dict[wav_hash]
40
+ except Exception as e:
41
+ print(e)
42
+ print(f"{file_name} error,auto rebuild file")
43
+ data_dict = {"info": "temp_dict"}
44
+ return data_dict
45
+
46
+
47
+ def write_temp(file_name, data):
48
+ with open(file_name, "w") as f:
49
+ f.write(json.dumps(data))
50
+
51
+
52
+ def timeit(func):
53
+ def run(*args, **kwargs):
54
+ t = time.time()
55
+ res = func(*args, **kwargs)
56
+ print('executing \'%s\' costed %.3fs' % (func.__name__, time.time() - t))
57
+ return res
58
+
59
+ return run
60
+
61
+
62
+ def format_wav(audio_path):
63
+ if Path(audio_path).suffix == '.wav':
64
+ return
65
+ raw_audio, raw_sample_rate = librosa.load(audio_path, mono=True, sr=None)
66
+ soundfile.write(Path(audio_path).with_suffix(".wav"), raw_audio, raw_sample_rate)
67
+
68
+
69
+ def get_end_file(dir_path, end):
70
+ file_lists = []
71
+ for root, dirs, files in os.walk(dir_path):
72
+ files = [f for f in files if f[0] != '.']
73
+ dirs[:] = [d for d in dirs if d[0] != '.']
74
+ for f_file in files:
75
+ if f_file.endswith(end):
76
+ file_lists.append(os.path.join(root, f_file).replace("\\", "/"))
77
+ return file_lists
78
+
79
+
80
+ def get_md5(content):
81
+ return hashlib.new("md5", content).hexdigest()
82
+
83
+
84
+ def resize2d_f0(x, target_len):
85
+ source = np.array(x)
86
+ source[source < 0.001] = np.nan
87
+ target = np.interp(np.arange(0, len(source) * target_len, len(source)) / target_len, np.arange(0, len(source)),
88
+ source)
89
+ res = np.nan_to_num(target)
90
+ return res
91
+
92
+ def get_f0(x, p_len,f0_up_key=0):
93
+
94
+ time_step = 160 / 16000 * 1000
95
+ f0_min = 50
96
+ f0_max = 1100
97
+ f0_mel_min = 1127 * np.log(1 + f0_min / 700)
98
+ f0_mel_max = 1127 * np.log(1 + f0_max / 700)
99
+
100
+ f0 = parselmouth.Sound(x, 16000).to_pitch_ac(
101
+ time_step=time_step / 1000, voicing_threshold=0.6,
102
+ pitch_floor=f0_min, pitch_ceiling=f0_max).selected_array['frequency']
103
+ if len(f0) > p_len:
104
+ f0 = f0[:p_len]
105
+ pad_size=(p_len - len(f0) + 1) // 2
106
+ if(pad_size>0 or p_len - len(f0) - pad_size>0):
107
+ f0 = np.pad(f0,[[pad_size,p_len - len(f0) - pad_size]], mode='constant')
108
+
109
+ f0 *= pow(2, f0_up_key / 12)
110
+ f0_mel = 1127 * np.log(1 + f0 / 700)
111
+ f0_mel[f0_mel > 0] = (f0_mel[f0_mel > 0] - f0_mel_min) * 254 / (f0_mel_max - f0_mel_min) + 1
112
+ f0_mel[f0_mel <= 1] = 1
113
+ f0_mel[f0_mel > 255] = 255
114
+ f0_coarse = np.rint(f0_mel).astype(np.int)
115
+ return f0_coarse, f0
116
+
117
+ def clean_pitch(input_pitch):
118
+ num_nan = np.sum(input_pitch == 1)
119
+ if num_nan / len(input_pitch) > 0.9:
120
+ input_pitch[input_pitch != 1] = 1
121
+ return input_pitch
122
+
123
+
124
+ def plt_pitch(input_pitch):
125
+ input_pitch = input_pitch.astype(float)
126
+ input_pitch[input_pitch == 1] = np.nan
127
+ return input_pitch
128
+
129
+
130
+ def f0_to_pitch(ff):
131
+ f0_pitch = 69 + 12 * np.log2(ff / 440)
132
+ return f0_pitch
133
+
134
+
135
+ def fill_a_to_b(a, b):
136
+ if len(a) < len(b):
137
+ for _ in range(0, len(b) - len(a)):
138
+ a.append(a[0])
139
+
140
+
141
+ def mkdir(paths: list):
142
+ for path in paths:
143
+ if not os.path.exists(path):
144
+ os.mkdir(path)
145
+
146
+
147
+ class Svc(object):
148
+ def __init__(self, net_g_path, config_path, hubert_path="hubert/hubert-soft-0d54a1f4.pt",
149
+ onnx=False):
150
+ self.onnx = onnx
151
+ self.net_g_path = net_g_path
152
+ self.hubert_path = hubert_path
153
+ self.dev = torch.device("cuda" if torch.cuda.is_available() else "cpu")
154
+ self.net_g_ms = None
155
+ self.hps_ms = utils.get_hparams_from_file(config_path)
156
+ self.target_sample = self.hps_ms.data.sampling_rate
157
+ self.hop_size = self.hps_ms.data.hop_length
158
+ self.speakers = {}
159
+ for spk, sid in self.hps_ms.spk.items():
160
+ self.speakers[sid] = spk
161
+ self.spk2id = self.hps_ms.spk
162
+ # 加载hubert
163
+ self.hubert_soft = hubert_model.hubert_soft(hubert_path)
164
+ if torch.cuda.is_available():
165
+ self.hubert_soft = self.hubert_soft.cuda()
166
+ self.load_model()
167
+
168
+ def load_model(self):
169
+ # 获取模型配置
170
+ if self.onnx:
171
+ raise NotImplementedError
172
+ # self.net_g_ms = SynthesizerTrnForONNX(
173
+ # 178,
174
+ # self.hps_ms.data.filter_length // 2 + 1,
175
+ # self.hps_ms.train.segment_size // self.hps_ms.data.hop_length,
176
+ # n_speakers=self.hps_ms.data.n_speakers,
177
+ # **self.hps_ms.model)
178
+ # _ = utils.load_checkpoint(self.net_g_path, self.net_g_ms, None)
179
+ else:
180
+ self.net_g_ms = SynthesizerTrn(
181
+ self.hps_ms.data.filter_length // 2 + 1,
182
+ self.hps_ms.train.segment_size // self.hps_ms.data.hop_length,
183
+ **self.hps_ms.model)
184
+ _ = utils.load_checkpoint(self.net_g_path, self.net_g_ms, None)
185
+ if "half" in self.net_g_path and torch.cuda.is_available():
186
+ _ = self.net_g_ms.half().eval().to(self.dev)
187
+ else:
188
+ _ = self.net_g_ms.eval().to(self.dev)
189
+
190
+ def get_units(self, source, sr):
191
+
192
+ source = source.unsqueeze(0).to(self.dev)
193
+ with torch.inference_mode():
194
+ start = time.time()
195
+ units = self.hubert_soft.units(source)
196
+ use_time = time.time() - start
197
+ print("hubert use time:{}".format(use_time))
198
+ return units
199
+
200
+
201
+ def get_unit_pitch(self, in_path, tran):
202
+ source, sr = torchaudio.load(in_path)
203
+ source = torchaudio.functional.resample(source, sr, 16000)
204
+ if len(source.shape) == 2 and source.shape[1] >= 2:
205
+ source = torch.mean(source, dim=0).unsqueeze(0)
206
+ soft = self.get_units(source, sr).squeeze(0).cpu().numpy()
207
+ f0_coarse, f0 = get_f0(source.cpu().numpy()[0], soft.shape[0]*2, tran)
208
+ return soft, f0
209
+
210
+ def infer(self, speaker_id, tran, raw_path):
211
+ if type(speaker_id) == str:
212
+ speaker_id = self.spk2id[speaker_id]
213
+ sid = torch.LongTensor([int(speaker_id)]).to(self.dev).unsqueeze(0)
214
+ soft, pitch = self.get_unit_pitch(raw_path, tran)
215
+ f0 = torch.FloatTensor(clean_pitch(pitch)).unsqueeze(0).to(self.dev)
216
+ if "half" in self.net_g_path and torch.cuda.is_available():
217
+ stn_tst = torch.HalfTensor(soft)
218
+ else:
219
+ stn_tst = torch.FloatTensor(soft)
220
+ with torch.no_grad():
221
+ x_tst = stn_tst.unsqueeze(0).to(self.dev)
222
+ start = time.time()
223
+ x_tst = torch.repeat_interleave(x_tst, repeats=2, dim=1).transpose(1, 2)
224
+ audio = self.net_g_ms.infer(x_tst, f0=f0, g=sid)[0,0].data.float()
225
+ use_time = time.time() - start
226
+ print("vits use time:{}".format(use_time))
227
+ return audio, audio.shape[-1]
228
+
229
+
230
+ # class SvcONNXInferModel(object):
231
+ # def __init__(self, hubert_onnx, vits_onnx, config_path):
232
+ # self.config_path = config_path
233
+ # self.vits_onnx = vits_onnx
234
+ # self.hubert_onnx = hubert_onnx
235
+ # self.hubert_onnx_session = onnxruntime.InferenceSession(hubert_onnx, providers=['CUDAExecutionProvider', ])
236
+ # self.inspect_onnx(self.hubert_onnx_session)
237
+ # self.vits_onnx_session = onnxruntime.InferenceSession(vits_onnx, providers=['CUDAExecutionProvider', ])
238
+ # self.inspect_onnx(self.vits_onnx_session)
239
+ # self.hps_ms = utils.get_hparams_from_file(self.config_path)
240
+ # self.target_sample = self.hps_ms.data.sampling_rate
241
+ # self.feature_input = FeatureInput(self.hps_ms.data.sampling_rate, self.hps_ms.data.hop_length)
242
+ #
243
+ # @staticmethod
244
+ # def inspect_onnx(session):
245
+ # for i in session.get_inputs():
246
+ # print("name:{}\tshape:{}\tdtype:{}".format(i.name, i.shape, i.type))
247
+ # for i in session.get_outputs():
248
+ # print("name:{}\tshape:{}\tdtype:{}".format(i.name, i.shape, i.type))
249
+ #
250
+ # def infer(self, speaker_id, tran, raw_path):
251
+ # sid = np.array([int(speaker_id)], dtype=np.int64)
252
+ # soft, pitch = self.get_unit_pitch(raw_path, tran)
253
+ # pitch = np.expand_dims(pitch, axis=0).astype(np.int64)
254
+ # stn_tst = soft
255
+ # x_tst = np.expand_dims(stn_tst, axis=0)
256
+ # x_tst_lengths = np.array([stn_tst.shape[0]], dtype=np.int64)
257
+ # # 使用ONNX Runtime进行推理
258
+ # start = time.time()
259
+ # audio = self.vits_onnx_session.run(output_names=["audio"],
260
+ # input_feed={
261
+ # "hidden_unit": x_tst,
262
+ # "lengths": x_tst_lengths,
263
+ # "pitch": pitch,
264
+ # "sid": sid,
265
+ # })[0][0, 0]
266
+ # use_time = time.time() - start
267
+ # print("vits_onnx_session.run time:{}".format(use_time))
268
+ # audio = torch.from_numpy(audio)
269
+ # return audio, audio.shape[-1]
270
+ #
271
+ # def get_units(self, source, sr):
272
+ # source = torchaudio.functional.resample(source, sr, 16000)
273
+ # if len(source.shape) == 2 and source.shape[1] >= 2:
274
+ # source = torch.mean(source, dim=0).unsqueeze(0)
275
+ # source = source.unsqueeze(0)
276
+ # # 使用ONNX Runtime进行推理
277
+ # start = time.time()
278
+ # units = self.hubert_onnx_session.run(output_names=["embed"],
279
+ # input_feed={"source": source.numpy()})[0]
280
+ # use_time = time.time() - start
281
+ # print("hubert_onnx_session.run time:{}".format(use_time))
282
+ # return units
283
+ #
284
+ # def transcribe(self, source, sr, length, transform):
285
+ # feature_pit = self.feature_input.compute_f0(source, sr)
286
+ # feature_pit = feature_pit * 2 ** (transform / 12)
287
+ # feature_pit = resize2d_f0(feature_pit, length)
288
+ # coarse_pit = self.feature_input.coarse_f0(feature_pit)
289
+ # return coarse_pit
290
+ #
291
+ # def get_unit_pitch(self, in_path, tran):
292
+ # source, sr = torchaudio.load(in_path)
293
+ # soft = self.get_units(source, sr).squeeze(0)
294
+ # input_pitch = self.transcribe(source.numpy()[0], sr, soft.shape[0], tran)
295
+ # return soft, input_pitch
296
+
297
+
298
+ class RealTimeVC:
299
+ def __init__(self):
300
+ self.last_chunk = None
301
+ self.last_o = None
302
+ self.chunk_len = 16000 # 区块长度
303
+ self.pre_len = 3840 # 交叉淡化长度,640的倍数
304
+
305
+ """输入输出都是1维numpy 音频波形数组"""
306
+
307
+ def process(self, svc_model, speaker_id, f_pitch_change, input_wav_path):
308
+ audio, sr = torchaudio.load(input_wav_path)
309
+ audio = audio.cpu().numpy()[0]
310
+ temp_wav = io.BytesIO()
311
+ if self.last_chunk is None:
312
+ input_wav_path.seek(0)
313
+ audio, sr = svc_model.infer(speaker_id, f_pitch_change, input_wav_path)
314
+ audio = audio.cpu().numpy()
315
+ self.last_chunk = audio[-self.pre_len:]
316
+ self.last_o = audio
317
+ return audio[-self.chunk_len:]
318
+ else:
319
+ audio = np.concatenate([self.last_chunk, audio])
320
+ soundfile.write(temp_wav, audio, sr, format="wav")
321
+ temp_wav.seek(0)
322
+ audio, sr = svc_model.infer(speaker_id, f_pitch_change, temp_wav)
323
+ audio = audio.cpu().numpy()
324
+ ret = maad.util.crossfade(self.last_o, audio, self.pre_len)
325
+ self.last_chunk = audio[-self.pre_len:]
326
+ self.last_o = audio
327
+ return ret[self.chunk_len:2 * self.chunk_len]
inference/infer_tool_grad.py ADDED
@@ -0,0 +1,160 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import hashlib
2
+ import json
3
+ import logging
4
+ import os
5
+ import time
6
+ from pathlib import Path
7
+ import io
8
+ import librosa
9
+ import maad
10
+ import numpy as np
11
+ from inference import slicer
12
+ import parselmouth
13
+ import soundfile
14
+ import torch
15
+ import torchaudio
16
+
17
+ from hubert import hubert_model
18
+ import utils
19
+ from models import SynthesizerTrn
20
+ logging.getLogger('numba').setLevel(logging.WARNING)
21
+ logging.getLogger('matplotlib').setLevel(logging.WARNING)
22
+
23
+ def resize2d_f0(x, target_len):
24
+ source = np.array(x)
25
+ source[source < 0.001] = np.nan
26
+ target = np.interp(np.arange(0, len(source) * target_len, len(source)) / target_len, np.arange(0, len(source)),
27
+ source)
28
+ res = np.nan_to_num(target)
29
+ return res
30
+
31
+ def get_f0(x, p_len,f0_up_key=0):
32
+
33
+ time_step = 160 / 16000 * 1000
34
+ f0_min = 50
35
+ f0_max = 1100
36
+ f0_mel_min = 1127 * np.log(1 + f0_min / 700)
37
+ f0_mel_max = 1127 * np.log(1 + f0_max / 700)
38
+
39
+ f0 = parselmouth.Sound(x, 16000).to_pitch_ac(
40
+ time_step=time_step / 1000, voicing_threshold=0.6,
41
+ pitch_floor=f0_min, pitch_ceiling=f0_max).selected_array['frequency']
42
+
43
+ pad_size=(p_len - len(f0) + 1) // 2
44
+ if(pad_size>0 or p_len - len(f0) - pad_size>0):
45
+ f0 = np.pad(f0,[[pad_size,p_len - len(f0) - pad_size]], mode='constant')
46
+
47
+ f0 *= pow(2, f0_up_key / 12)
48
+ f0_mel = 1127 * np.log(1 + f0 / 700)
49
+ f0_mel[f0_mel > 0] = (f0_mel[f0_mel > 0] - f0_mel_min) * 254 / (f0_mel_max - f0_mel_min) + 1
50
+ f0_mel[f0_mel <= 1] = 1
51
+ f0_mel[f0_mel > 255] = 255
52
+ f0_coarse = np.rint(f0_mel).astype(np.int)
53
+ return f0_coarse, f0
54
+
55
+ def clean_pitch(input_pitch):
56
+ num_nan = np.sum(input_pitch == 1)
57
+ if num_nan / len(input_pitch) > 0.9:
58
+ input_pitch[input_pitch != 1] = 1
59
+ return input_pitch
60
+
61
+
62
+ def plt_pitch(input_pitch):
63
+ input_pitch = input_pitch.astype(float)
64
+ input_pitch[input_pitch == 1] = np.nan
65
+ return input_pitch
66
+
67
+
68
+ def f0_to_pitch(ff):
69
+ f0_pitch = 69 + 12 * np.log2(ff / 440)
70
+ return f0_pitch
71
+
72
+
73
+ def fill_a_to_b(a, b):
74
+ if len(a) < len(b):
75
+ for _ in range(0, len(b) - len(a)):
76
+ a.append(a[0])
77
+
78
+
79
+ def mkdir(paths: list):
80
+ for path in paths:
81
+ if not os.path.exists(path):
82
+ os.mkdir(path)
83
+
84
+
85
+ class VitsSvc(object):
86
+ def __init__(self):
87
+ self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
88
+ self.SVCVITS = None
89
+ self.hps = None
90
+ self.speakers = None
91
+ self.hubert_soft = hubert_model.hubert_soft("hubert/model.pt")
92
+
93
+ def set_device(self, device):
94
+ self.device = torch.device(device)
95
+ self.hubert_soft.to(self.device)
96
+ if self.SVCVITS != None:
97
+ self.SVCVITS.to(self.device)
98
+
99
+ def loadCheckpoint(self, path):
100
+ self.hps = utils.get_hparams_from_file(f"checkpoints/{path}/config.json")
101
+ self.SVCVITS = SynthesizerTrn(
102
+ self.hps.data.filter_length // 2 + 1,
103
+ self.hps.train.segment_size // self.hps.data.hop_length,
104
+ **self.hps.model)
105
+ _ = utils.load_checkpoint(f"checkpoints/{path}/model.pth", self.SVCVITS, None)
106
+ _ = self.SVCVITS.eval().to(self.device)
107
+ self.speakers = self.hps.spk
108
+
109
+ def get_units(self, source, sr):
110
+ source = source.unsqueeze(0).to(self.device)
111
+ with torch.inference_mode():
112
+ units = self.hubert_soft.units(source)
113
+ return units
114
+
115
+
116
+ def get_unit_pitch(self, in_path, tran):
117
+ source, sr = torchaudio.load(in_path)
118
+ source = torchaudio.functional.resample(source, sr, 16000)
119
+ if len(source.shape) == 2 and source.shape[1] >= 2:
120
+ source = torch.mean(source, dim=0).unsqueeze(0)
121
+ soft = self.get_units(source, sr).squeeze(0).cpu().numpy()
122
+ f0_coarse, f0 = get_f0(source.cpu().numpy()[0], soft.shape[0]*2, tran)
123
+ return soft, f0
124
+
125
+ def infer(self, speaker_id, tran, raw_path):
126
+ speaker_id = self.speakers[speaker_id]
127
+ sid = torch.LongTensor([int(speaker_id)]).to(self.device).unsqueeze(0)
128
+ soft, pitch = self.get_unit_pitch(raw_path, tran)
129
+ f0 = torch.FloatTensor(clean_pitch(pitch)).unsqueeze(0).to(self.device)
130
+ stn_tst = torch.FloatTensor(soft)
131
+ with torch.no_grad():
132
+ x_tst = stn_tst.unsqueeze(0).to(self.device)
133
+ x_tst = torch.repeat_interleave(x_tst, repeats=2, dim=1).transpose(1, 2)
134
+ audio = self.SVCVITS.infer(x_tst, f0=f0, g=sid)[0,0].data.float()
135
+ return audio, audio.shape[-1]
136
+
137
+ def inference(self,srcaudio,chara,tran,slice_db):
138
+ sampling_rate, audio = srcaudio
139
+ audio = (audio / np.iinfo(audio.dtype).max).astype(np.float32)
140
+ if len(audio.shape) > 1:
141
+ audio = librosa.to_mono(audio.transpose(1, 0))
142
+ if sampling_rate != 16000:
143
+ audio = librosa.resample(audio, orig_sr=sampling_rate, target_sr=16000)
144
+ soundfile.write("tmpwav.wav", audio, 16000, format="wav")
145
+ chunks = slicer.cut("tmpwav.wav", db_thresh=slice_db)
146
+ audio_data, audio_sr = slicer.chunks2audio("tmpwav.wav", chunks)
147
+ audio = []
148
+ for (slice_tag, data) in audio_data:
149
+ length = int(np.ceil(len(data) / audio_sr * self.hps.data.sampling_rate))
150
+ raw_path = io.BytesIO()
151
+ soundfile.write(raw_path, data, audio_sr, format="wav")
152
+ raw_path.seek(0)
153
+ if slice_tag:
154
+ _audio = np.zeros(length)
155
+ else:
156
+ out_audio, out_sr = self.infer(chara, tran, raw_path)
157
+ _audio = out_audio.cpu().numpy()
158
+ audio.extend(list(_audio))
159
+ audio = (np.array(audio) * 32768.0).astype('int16')
160
+ return (self.hps.data.sampling_rate,audio)
inference/slicer.py ADDED
@@ -0,0 +1,142 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import librosa
2
+ import torch
3
+ import torchaudio
4
+
5
+
6
+ class Slicer:
7
+ def __init__(self,
8
+ sr: int,
9
+ threshold: float = -40.,
10
+ min_length: int = 5000,
11
+ min_interval: int = 300,
12
+ hop_size: int = 20,
13
+ max_sil_kept: int = 5000):
14
+ if not min_length >= min_interval >= hop_size:
15
+ raise ValueError('The following condition must be satisfied: min_length >= min_interval >= hop_size')
16
+ if not max_sil_kept >= hop_size:
17
+ raise ValueError('The following condition must be satisfied: max_sil_kept >= hop_size')
18
+ min_interval = sr * min_interval / 1000
19
+ self.threshold = 10 ** (threshold / 20.)
20
+ self.hop_size = round(sr * hop_size / 1000)
21
+ self.win_size = min(round(min_interval), 4 * self.hop_size)
22
+ self.min_length = round(sr * min_length / 1000 / self.hop_size)
23
+ self.min_interval = round(min_interval / self.hop_size)
24
+ self.max_sil_kept = round(sr * max_sil_kept / 1000 / self.hop_size)
25
+
26
+ def _apply_slice(self, waveform, begin, end):
27
+ if len(waveform.shape) > 1:
28
+ return waveform[:, begin * self.hop_size: min(waveform.shape[1], end * self.hop_size)]
29
+ else:
30
+ return waveform[begin * self.hop_size: min(waveform.shape[0], end * self.hop_size)]
31
+
32
+ # @timeit
33
+ def slice(self, waveform):
34
+ if len(waveform.shape) > 1:
35
+ samples = librosa.to_mono(waveform)
36
+ else:
37
+ samples = waveform
38
+ if samples.shape[0] <= self.min_length:
39
+ return {"0": {"slice": False, "split_time": f"0,{len(waveform)}"}}
40
+ rms_list = librosa.feature.rms(y=samples, frame_length=self.win_size, hop_length=self.hop_size).squeeze(0)
41
+ sil_tags = []
42
+ silence_start = None
43
+ clip_start = 0
44
+ for i, rms in enumerate(rms_list):
45
+ # Keep looping while frame is silent.
46
+ if rms < self.threshold:
47
+ # Record start of silent frames.
48
+ if silence_start is None:
49
+ silence_start = i
50
+ continue
51
+ # Keep looping while frame is not silent and silence start has not been recorded.
52
+ if silence_start is None:
53
+ continue
54
+ # Clear recorded silence start if interval is not enough or clip is too short
55
+ is_leading_silence = silence_start == 0 and i > self.max_sil_kept
56
+ need_slice_middle = i - silence_start >= self.min_interval and i - clip_start >= self.min_length
57
+ if not is_leading_silence and not need_slice_middle:
58
+ silence_start = None
59
+ continue
60
+ # Need slicing. Record the range of silent frames to be removed.
61
+ if i - silence_start <= self.max_sil_kept:
62
+ pos = rms_list[silence_start: i + 1].argmin() + silence_start
63
+ if silence_start == 0:
64
+ sil_tags.append((0, pos))
65
+ else:
66
+ sil_tags.append((pos, pos))
67
+ clip_start = pos
68
+ elif i - silence_start <= self.max_sil_kept * 2:
69
+ pos = rms_list[i - self.max_sil_kept: silence_start + self.max_sil_kept + 1].argmin()
70
+ pos += i - self.max_sil_kept
71
+ pos_l = rms_list[silence_start: silence_start + self.max_sil_kept + 1].argmin() + silence_start
72
+ pos_r = rms_list[i - self.max_sil_kept: i + 1].argmin() + i - self.max_sil_kept
73
+ if silence_start == 0:
74
+ sil_tags.append((0, pos_r))
75
+ clip_start = pos_r
76
+ else:
77
+ sil_tags.append((min(pos_l, pos), max(pos_r, pos)))
78
+ clip_start = max(pos_r, pos)
79
+ else:
80
+ pos_l = rms_list[silence_start: silence_start + self.max_sil_kept + 1].argmin() + silence_start
81
+ pos_r = rms_list[i - self.max_sil_kept: i + 1].argmin() + i - self.max_sil_kept
82
+ if silence_start == 0:
83
+ sil_tags.append((0, pos_r))
84
+ else:
85
+ sil_tags.append((pos_l, pos_r))
86
+ clip_start = pos_r
87
+ silence_start = None
88
+ # Deal with trailing silence.
89
+ total_frames = rms_list.shape[0]
90
+ if silence_start is not None and total_frames - silence_start >= self.min_interval:
91
+ silence_end = min(total_frames, silence_start + self.max_sil_kept)
92
+ pos = rms_list[silence_start: silence_end + 1].argmin() + silence_start
93
+ sil_tags.append((pos, total_frames + 1))
94
+ # Apply and return slices.
95
+ if len(sil_tags) == 0:
96
+ return {"0": {"slice": False, "split_time": f"0,{len(waveform)}"}}
97
+ else:
98
+ chunks = []
99
+ # 第一段静音并非从头开始,补上有声片段
100
+ if sil_tags[0][0]:
101
+ chunks.append(
102
+ {"slice": False, "split_time": f"0,{min(waveform.shape[0], sil_tags[0][0] * self.hop_size)}"})
103
+ for i in range(0, len(sil_tags)):
104
+ # 标识有声片段(跳过第一段)
105
+ if i:
106
+ chunks.append({"slice": False,
107
+ "split_time": f"{sil_tags[i - 1][1] * self.hop_size},{min(waveform.shape[0], sil_tags[i][0] * self.hop_size)}"})
108
+ # 标识所有静音片段
109
+ chunks.append({"slice": True,
110
+ "split_time": f"{sil_tags[i][0] * self.hop_size},{min(waveform.shape[0], sil_tags[i][1] * self.hop_size)}"})
111
+ # 最后一段静音并非结尾,补上结尾片段
112
+ if sil_tags[-1][1] * self.hop_size < len(waveform):
113
+ chunks.append({"slice": False, "split_time": f"{sil_tags[-1][1] * self.hop_size},{len(waveform)}"})
114
+ chunk_dict = {}
115
+ for i in range(len(chunks)):
116
+ chunk_dict[str(i)] = chunks[i]
117
+ return chunk_dict
118
+
119
+
120
+ def cut(audio_path, db_thresh=-30, min_len=5000):
121
+ audio, sr = librosa.load(audio_path, sr=None)
122
+ slicer = Slicer(
123
+ sr=sr,
124
+ threshold=db_thresh,
125
+ min_length=min_len
126
+ )
127
+ chunks = slicer.slice(audio)
128
+ return chunks
129
+
130
+
131
+ def chunks2audio(audio_path, chunks):
132
+ chunks = dict(chunks)
133
+ audio, sr = torchaudio.load(audio_path)
134
+ if len(audio.shape) == 2 and audio.shape[1] >= 2:
135
+ audio = torch.mean(audio, dim=0).unsqueeze(0)
136
+ audio = audio.cpu().numpy()[0]
137
+ result = []
138
+ for k, v in chunks.items():
139
+ tag = v["split_time"].split(",")
140
+ if tag[0] != tag[1]:
141
+ result.append((v["slice"], audio[int(tag[0]):int(tag[1])]))
142
+ return result, sr
inference_main.py ADDED
@@ -0,0 +1,56 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import io
2
+ import logging
3
+ import time
4
+ from pathlib import Path
5
+
6
+ import librosa
7
+ import numpy as np
8
+ import soundfile
9
+
10
+ from inference import infer_tool
11
+ from inference import slicer
12
+ from inference.infer_tool import Svc
13
+
14
+ logging.getLogger('numba').setLevel(logging.WARNING)
15
+ chunks_dict = infer_tool.read_temp("inference/chunks_temp.json")
16
+
17
+ model_path = "logs/32k/G_174000-Copy1.pth"
18
+ config_path = "configs/config.json"
19
+ svc_model = Svc(model_path, config_path)
20
+ infer_tool.mkdir(["raw", "results"])
21
+
22
+ # 支持多个wav文件,放在raw文件夹下
23
+ clean_names = ["君の知らない物語-src"]
24
+ trans = [-5] # 音高调整,支持正负(半音)
25
+ spk_list = ['yunhao'] # 每次同时合成多语者音色
26
+ slice_db = -40 # 默认-40,嘈杂的音频可以-30,干声保留呼吸可以-50
27
+ wav_format = 'flac' # 音频输出格式
28
+
29
+ infer_tool.fill_a_to_b(trans, clean_names)
30
+ for clean_name, tran in zip(clean_names, trans):
31
+ raw_audio_path = f"raw/{clean_name}"
32
+ if "." not in raw_audio_path:
33
+ raw_audio_path += ".wav"
34
+ infer_tool.format_wav(raw_audio_path)
35
+ wav_path = Path(raw_audio_path).with_suffix('.wav')
36
+ chunks = slicer.cut(wav_path, db_thresh=slice_db)
37
+ audio_data, audio_sr = slicer.chunks2audio(wav_path, chunks)
38
+
39
+ for spk in spk_list:
40
+ audio = []
41
+ for (slice_tag, data) in audio_data:
42
+ print(f'#=====segment start, {round(len(data) / audio_sr, 3)}s======')
43
+ length = int(np.ceil(len(data) / audio_sr * svc_model.target_sample))
44
+ raw_path = io.BytesIO()
45
+ soundfile.write(raw_path, data, audio_sr, format="wav")
46
+ raw_path.seek(0)
47
+ if slice_tag:
48
+ print('jump empty segment')
49
+ _audio = np.zeros(length)
50
+ else:
51
+ out_audio, out_sr = svc_model.infer(spk, tran, raw_path)
52
+ _audio = out_audio.cpu().numpy()
53
+ audio.extend(list(_audio))
54
+
55
+ res_path = f'./results/{clean_name}_{tran}key_{spk}.{wav_format}'
56
+ soundfile.write(res_path, audio, svc_model.target_sample, format=wav_format)
logs/32k/put_pretrained_model_here ADDED
File without changes
losses.py ADDED
@@ -0,0 +1,61 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ from torch.nn import functional as F
3
+
4
+ import commons
5
+
6
+
7
+ def feature_loss(fmap_r, fmap_g):
8
+ loss = 0
9
+ for dr, dg in zip(fmap_r, fmap_g):
10
+ for rl, gl in zip(dr, dg):
11
+ rl = rl.float().detach()
12
+ gl = gl.float()
13
+ loss += torch.mean(torch.abs(rl - gl))
14
+
15
+ return loss * 2
16
+
17
+
18
+ def discriminator_loss(disc_real_outputs, disc_generated_outputs):
19
+ loss = 0
20
+ r_losses = []
21
+ g_losses = []
22
+ for dr, dg in zip(disc_real_outputs, disc_generated_outputs):
23
+ dr = dr.float()
24
+ dg = dg.float()
25
+ r_loss = torch.mean((1-dr)**2)
26
+ g_loss = torch.mean(dg**2)
27
+ loss += (r_loss + g_loss)
28
+ r_losses.append(r_loss.item())
29
+ g_losses.append(g_loss.item())
30
+
31
+ return loss, r_losses, g_losses
32
+
33
+
34
+ def generator_loss(disc_outputs):
35
+ loss = 0
36
+ gen_losses = []
37
+ for dg in disc_outputs:
38
+ dg = dg.float()
39
+ l = torch.mean((1-dg)**2)
40
+ gen_losses.append(l)
41
+ loss += l
42
+
43
+ return loss, gen_losses
44
+
45
+
46
+ def kl_loss(z_p, logs_q, m_p, logs_p, z_mask):
47
+ """
48
+ z_p, logs_q: [b, h, t_t]
49
+ m_p, logs_p: [b, h, t_t]
50
+ """
51
+ z_p = z_p.float()
52
+ logs_q = logs_q.float()
53
+ m_p = m_p.float()
54
+ logs_p = logs_p.float()
55
+ z_mask = z_mask.float()
56
+ #print(logs_p)
57
+ kl = logs_p - logs_q - 0.5
58
+ kl += 0.5 * ((z_p - m_p)**2) * torch.exp(-2. * logs_p)
59
+ kl = torch.sum(kl * z_mask)
60
+ l = kl / torch.sum(z_mask)
61
+ return l
mel_processing.py ADDED
@@ -0,0 +1,112 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import math
2
+ import os
3
+ import random
4
+ import torch
5
+ from torch import nn
6
+ import torch.nn.functional as F
7
+ import torch.utils.data
8
+ import numpy as np
9
+ import librosa
10
+ import librosa.util as librosa_util
11
+ from librosa.util import normalize, pad_center, tiny
12
+ from scipy.signal import get_window
13
+ from scipy.io.wavfile import read
14
+ from librosa.filters import mel as librosa_mel_fn
15
+
16
+ MAX_WAV_VALUE = 32768.0
17
+
18
+
19
+ def dynamic_range_compression_torch(x, C=1, clip_val=1e-5):
20
+ """
21
+ PARAMS
22
+ ------
23
+ C: compression factor
24
+ """
25
+ return torch.log(torch.clamp(x, min=clip_val) * C)
26
+
27
+
28
+ def dynamic_range_decompression_torch(x, C=1):
29
+ """
30
+ PARAMS
31
+ ------
32
+ C: compression factor used to compress
33
+ """
34
+ return torch.exp(x) / C
35
+
36
+
37
+ def spectral_normalize_torch(magnitudes):
38
+ output = dynamic_range_compression_torch(magnitudes)
39
+ return output
40
+
41
+
42
+ def spectral_de_normalize_torch(magnitudes):
43
+ output = dynamic_range_decompression_torch(magnitudes)
44
+ return output
45
+
46
+
47
+ mel_basis = {}
48
+ hann_window = {}
49
+
50
+
51
+ def spectrogram_torch(y, n_fft, sampling_rate, hop_size, win_size, center=False):
52
+ if torch.min(y) < -1.:
53
+ print('min value is ', torch.min(y))
54
+ if torch.max(y) > 1.:
55
+ print('max value is ', torch.max(y))
56
+
57
+ global hann_window
58
+ dtype_device = str(y.dtype) + '_' + str(y.device)
59
+ wnsize_dtype_device = str(win_size) + '_' + dtype_device
60
+ if wnsize_dtype_device not in hann_window:
61
+ hann_window[wnsize_dtype_device] = torch.hann_window(win_size).to(dtype=y.dtype, device=y.device)
62
+
63
+ y = torch.nn.functional.pad(y.unsqueeze(1), (int((n_fft-hop_size)/2), int((n_fft-hop_size)/2)), mode='reflect')
64
+ y = y.squeeze(1)
65
+
66
+ spec = torch.stft(y, n_fft, hop_length=hop_size, win_length=win_size, window=hann_window[wnsize_dtype_device],
67
+ center=center, pad_mode='reflect', normalized=False, onesided=True, return_complex=False)
68
+
69
+ spec = torch.sqrt(spec.pow(2).sum(-1) + 1e-6)
70
+ return spec
71
+
72
+
73
+ def spec_to_mel_torch(spec, n_fft, num_mels, sampling_rate, fmin, fmax):
74
+ global mel_basis
75
+ dtype_device = str(spec.dtype) + '_' + str(spec.device)
76
+ fmax_dtype_device = str(fmax) + '_' + dtype_device
77
+ if fmax_dtype_device not in mel_basis:
78
+ mel = librosa_mel_fn(sr=sampling_rate, n_fft=n_fft, n_mels=num_mels, fmin=fmin, fmax=fmax)
79
+ mel_basis[fmax_dtype_device] = torch.from_numpy(mel).to(dtype=spec.dtype, device=spec.device)
80
+ spec = torch.matmul(mel_basis[fmax_dtype_device], spec)
81
+ spec = spectral_normalize_torch(spec)
82
+ return spec
83
+
84
+
85
+ def mel_spectrogram_torch(y, n_fft, num_mels, sampling_rate, hop_size, win_size, fmin, fmax, center=False):
86
+ if torch.min(y) < -1.:
87
+ print('min value is ', torch.min(y))
88
+ if torch.max(y) > 1.:
89
+ print('max value is ', torch.max(y))
90
+
91
+ global mel_basis, hann_window
92
+ dtype_device = str(y.dtype) + '_' + str(y.device)
93
+ fmax_dtype_device = str(fmax) + '_' + dtype_device
94
+ wnsize_dtype_device = str(win_size) + '_' + dtype_device
95
+ if fmax_dtype_device not in mel_basis:
96
+ mel = librosa_mel_fn(sr=sampling_rate, n_fft=n_fft, n_mels=num_mels, fmin=fmin, fmax=fmax)
97
+ mel_basis[fmax_dtype_device] = torch.from_numpy(mel).to(dtype=y.dtype, device=y.device)
98
+ if wnsize_dtype_device not in hann_window:
99
+ hann_window[wnsize_dtype_device] = torch.hann_window(win_size).to(dtype=y.dtype, device=y.device)
100
+
101
+ y = torch.nn.functional.pad(y.unsqueeze(1), (int((n_fft-hop_size)/2), int((n_fft-hop_size)/2)), mode='reflect')
102
+ y = y.squeeze(1)
103
+
104
+ spec = torch.stft(y, n_fft, hop_length=hop_size, win_length=win_size, window=hann_window[wnsize_dtype_device],
105
+ center=center, pad_mode='reflect', normalized=False, onesided=True, return_complex=False)
106
+
107
+ spec = torch.sqrt(spec.pow(2).sum(-1) + 1e-6)
108
+
109
+ spec = torch.matmul(mel_basis[fmax_dtype_device], spec)
110
+ spec = spectral_normalize_torch(spec)
111
+
112
+ return spec
model_onnx.py ADDED
@@ -0,0 +1,328 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import copy
2
+ import math
3
+ import torch
4
+ from torch import nn
5
+ from torch.nn import functional as F
6
+
7
+ import attentions
8
+ import commons
9
+ import modules
10
+
11
+ from torch.nn import Conv1d, ConvTranspose1d, AvgPool1d, Conv2d
12
+ from torch.nn.utils import weight_norm, remove_weight_norm, spectral_norm
13
+ from commons import init_weights, get_padding
14
+ from vdecoder.hifigan.models import Generator
15
+ from utils import f0_to_coarse
16
+
17
+ class ResidualCouplingBlock(nn.Module):
18
+ def __init__(self,
19
+ channels,
20
+ hidden_channels,
21
+ kernel_size,
22
+ dilation_rate,
23
+ n_layers,
24
+ n_flows=4,
25
+ gin_channels=0):
26
+ super().__init__()
27
+ self.channels = channels
28
+ self.hidden_channels = hidden_channels
29
+ self.kernel_size = kernel_size
30
+ self.dilation_rate = dilation_rate
31
+ self.n_layers = n_layers
32
+ self.n_flows = n_flows
33
+ self.gin_channels = gin_channels
34
+
35
+ self.flows = nn.ModuleList()
36
+ for i in range(n_flows):
37
+ self.flows.append(modules.ResidualCouplingLayer(channels, hidden_channels, kernel_size, dilation_rate, n_layers, gin_channels=gin_channels, mean_only=True))
38
+ self.flows.append(modules.Flip())
39
+
40
+ def forward(self, x, x_mask, g=None, reverse=False):
41
+ if not reverse:
42
+ for flow in self.flows:
43
+ x, _ = flow(x, x_mask, g=g, reverse=reverse)
44
+ else:
45
+ for flow in reversed(self.flows):
46
+ x = flow(x, x_mask, g=g, reverse=reverse)
47
+ return x
48
+
49
+
50
+ class Encoder(nn.Module):
51
+ def __init__(self,
52
+ in_channels,
53
+ out_channels,
54
+ hidden_channels,
55
+ kernel_size,
56
+ dilation_rate,
57
+ n_layers,
58
+ gin_channels=0):
59
+ super().__init__()
60
+ self.in_channels = in_channels
61
+ self.out_channels = out_channels
62
+ self.hidden_channels = hidden_channels
63
+ self.kernel_size = kernel_size
64
+ self.dilation_rate = dilation_rate
65
+ self.n_layers = n_layers
66
+ self.gin_channels = gin_channels
67
+
68
+ self.pre = nn.Conv1d(in_channels, hidden_channels, 1)
69
+ self.enc = modules.WN(hidden_channels, kernel_size, dilation_rate, n_layers, gin_channels=gin_channels)
70
+ self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1)
71
+
72
+ def forward(self, x, x_lengths, g=None):
73
+ # print(x.shape,x_lengths.shape)
74
+ x_mask = torch.unsqueeze(commons.sequence_mask(x_lengths, x.size(2)), 1).to(x.dtype)
75
+ x = self.pre(x) * x_mask
76
+ x = self.enc(x, x_mask, g=g)
77
+ stats = self.proj(x) * x_mask
78
+ m, logs = torch.split(stats, self.out_channels, dim=1)
79
+ z = (m + torch.randn_like(m) * torch.exp(logs)) * x_mask
80
+ return z, m, logs, x_mask
81
+
82
+
83
+ class TextEncoder(nn.Module):
84
+ def __init__(self,
85
+ in_channels,
86
+ out_channels,
87
+ hidden_channels,
88
+ kernel_size,
89
+ dilation_rate,
90
+ n_layers,
91
+ gin_channels=0,
92
+ filter_channels=None,
93
+ n_heads=None,
94
+ p_dropout=None):
95
+ super().__init__()
96
+ self.in_channels = in_channels
97
+ self.out_channels = out_channels
98
+ self.hidden_channels = hidden_channels
99
+ self.kernel_size = kernel_size
100
+ self.dilation_rate = dilation_rate
101
+ self.n_layers = n_layers
102
+ self.gin_channels = gin_channels
103
+ self.pre = nn.Conv1d(in_channels, hidden_channels, 1)
104
+ self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1)
105
+ self.f0_emb = nn.Embedding(256, hidden_channels)
106
+
107
+ self.enc_ = attentions.Encoder(
108
+ hidden_channels,
109
+ filter_channels,
110
+ n_heads,
111
+ n_layers,
112
+ kernel_size,
113
+ p_dropout)
114
+
115
+ def forward(self, x, x_lengths, f0=None):
116
+ x_mask = torch.unsqueeze(commons.sequence_mask(x_lengths, x.size(2)), 1).to(x.dtype)
117
+ x = self.pre(x) * x_mask
118
+ x = x + self.f0_emb(f0.long()).transpose(1,2)
119
+ x = self.enc_(x * x_mask, x_mask)
120
+ stats = self.proj(x) * x_mask
121
+ m, logs = torch.split(stats, self.out_channels, dim=1)
122
+ z = (m + torch.randn_like(m) * torch.exp(logs)) * x_mask
123
+
124
+ return z, m, logs, x_mask
125
+
126
+
127
+
128
+ class DiscriminatorP(torch.nn.Module):
129
+ def __init__(self, period, kernel_size=5, stride=3, use_spectral_norm=False):
130
+ super(DiscriminatorP, self).__init__()
131
+ self.period = period
132
+ self.use_spectral_norm = use_spectral_norm
133
+ norm_f = weight_norm if use_spectral_norm == False else spectral_norm
134
+ self.convs = nn.ModuleList([
135
+ norm_f(Conv2d(1, 32, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))),
136
+ norm_f(Conv2d(32, 128, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))),
137
+ norm_f(Conv2d(128, 512, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))),
138
+ norm_f(Conv2d(512, 1024, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))),
139
+ norm_f(Conv2d(1024, 1024, (kernel_size, 1), 1, padding=(get_padding(kernel_size, 1), 0))),
140
+ ])
141
+ self.conv_post = norm_f(Conv2d(1024, 1, (3, 1), 1, padding=(1, 0)))
142
+
143
+ def forward(self, x):
144
+ fmap = []
145
+
146
+ # 1d to 2d
147
+ b, c, t = x.shape
148
+ if t % self.period != 0: # pad first
149
+ n_pad = self.period - (t % self.period)
150
+ x = F.pad(x, (0, n_pad), "reflect")
151
+ t = t + n_pad
152
+ x = x.view(b, c, t // self.period, self.period)
153
+
154
+ for l in self.convs:
155
+ x = l(x)
156
+ x = F.leaky_relu(x, modules.LRELU_SLOPE)
157
+ fmap.append(x)
158
+ x = self.conv_post(x)
159
+ fmap.append(x)
160
+ x = torch.flatten(x, 1, -1)
161
+
162
+ return x, fmap
163
+
164
+
165
+ class DiscriminatorS(torch.nn.Module):
166
+ def __init__(self, use_spectral_norm=False):
167
+ super(DiscriminatorS, self).__init__()
168
+ norm_f = weight_norm if use_spectral_norm == False else spectral_norm
169
+ self.convs = nn.ModuleList([
170
+ norm_f(Conv1d(1, 16, 15, 1, padding=7)),
171
+ norm_f(Conv1d(16, 64, 41, 4, groups=4, padding=20)),
172
+ norm_f(Conv1d(64, 256, 41, 4, groups=16, padding=20)),
173
+ norm_f(Conv1d(256, 1024, 41, 4, groups=64, padding=20)),
174
+ norm_f(Conv1d(1024, 1024, 41, 4, groups=256, padding=20)),
175
+ norm_f(Conv1d(1024, 1024, 5, 1, padding=2)),
176
+ ])
177
+ self.conv_post = norm_f(Conv1d(1024, 1, 3, 1, padding=1))
178
+
179
+ def forward(self, x):
180
+ fmap = []
181
+
182
+ for l in self.convs:
183
+ x = l(x)
184
+ x = F.leaky_relu(x, modules.LRELU_SLOPE)
185
+ fmap.append(x)
186
+ x = self.conv_post(x)
187
+ fmap.append(x)
188
+ x = torch.flatten(x, 1, -1)
189
+
190
+ return x, fmap
191
+
192
+
193
+ class MultiPeriodDiscriminator(torch.nn.Module):
194
+ def __init__(self, use_spectral_norm=False):
195
+ super(MultiPeriodDiscriminator, self).__init__()
196
+ periods = [2,3,5,7,11]
197
+
198
+ discs = [DiscriminatorS(use_spectral_norm=use_spectral_norm)]
199
+ discs = discs + [DiscriminatorP(i, use_spectral_norm=use_spectral_norm) for i in periods]
200
+ self.discriminators = nn.ModuleList(discs)
201
+
202
+ def forward(self, y, y_hat):
203
+ y_d_rs = []
204
+ y_d_gs = []
205
+ fmap_rs = []
206
+ fmap_gs = []
207
+ for i, d in enumerate(self.discriminators):
208
+ y_d_r, fmap_r = d(y)
209
+ y_d_g, fmap_g = d(y_hat)
210
+ y_d_rs.append(y_d_r)
211
+ y_d_gs.append(y_d_g)
212
+ fmap_rs.append(fmap_r)
213
+ fmap_gs.append(fmap_g)
214
+
215
+ return y_d_rs, y_d_gs, fmap_rs, fmap_gs
216
+
217
+
218
+ class SpeakerEncoder(torch.nn.Module):
219
+ def __init__(self, mel_n_channels=80, model_num_layers=3, model_hidden_size=256, model_embedding_size=256):
220
+ super(SpeakerEncoder, self).__init__()
221
+ self.lstm = nn.LSTM(mel_n_channels, model_hidden_size, model_num_layers, batch_first=True)
222
+ self.linear = nn.Linear(model_hidden_size, model_embedding_size)
223
+ self.relu = nn.ReLU()
224
+
225
+ def forward(self, mels):
226
+ self.lstm.flatten_parameters()
227
+ _, (hidden, _) = self.lstm(mels)
228
+ embeds_raw = self.relu(self.linear(hidden[-1]))
229
+ return embeds_raw / torch.norm(embeds_raw, dim=1, keepdim=True)
230
+
231
+ def compute_partial_slices(self, total_frames, partial_frames, partial_hop):
232
+ mel_slices = []
233
+ for i in range(0, total_frames-partial_frames, partial_hop):
234
+ mel_range = torch.arange(i, i+partial_frames)
235
+ mel_slices.append(mel_range)
236
+
237
+ return mel_slices
238
+
239
+ def embed_utterance(self, mel, partial_frames=128, partial_hop=64):
240
+ mel_len = mel.size(1)
241
+ last_mel = mel[:,-partial_frames:]
242
+
243
+ if mel_len > partial_frames:
244
+ mel_slices = self.compute_partial_slices(mel_len, partial_frames, partial_hop)
245
+ mels = list(mel[:,s] for s in mel_slices)
246
+ mels.append(last_mel)
247
+ mels = torch.stack(tuple(mels), 0).squeeze(1)
248
+
249
+ with torch.no_grad():
250
+ partial_embeds = self(mels)
251
+ embed = torch.mean(partial_embeds, axis=0).unsqueeze(0)
252
+ #embed = embed / torch.linalg.norm(embed, 2)
253
+ else:
254
+ with torch.no_grad():
255
+ embed = self(last_mel)
256
+
257
+ return embed
258
+
259
+
260
+ class SynthesizerTrn(nn.Module):
261
+ """
262
+ Synthesizer for Training
263
+ """
264
+
265
+ def __init__(self,
266
+ spec_channels,
267
+ segment_size,
268
+ inter_channels,
269
+ hidden_channels,
270
+ filter_channels,
271
+ n_heads,
272
+ n_layers,
273
+ kernel_size,
274
+ p_dropout,
275
+ resblock,
276
+ resblock_kernel_sizes,
277
+ resblock_dilation_sizes,
278
+ upsample_rates,
279
+ upsample_initial_channel,
280
+ upsample_kernel_sizes,
281
+ gin_channels,
282
+ ssl_dim,
283
+ n_speakers,
284
+ **kwargs):
285
+
286
+ super().__init__()
287
+ self.spec_channels = spec_channels
288
+ self.inter_channels = inter_channels
289
+ self.hidden_channels = hidden_channels
290
+ self.filter_channels = filter_channels
291
+ self.n_heads = n_heads
292
+ self.n_layers = n_layers
293
+ self.kernel_size = kernel_size
294
+ self.p_dropout = p_dropout
295
+ self.resblock = resblock
296
+ self.resblock_kernel_sizes = resblock_kernel_sizes
297
+ self.resblock_dilation_sizes = resblock_dilation_sizes
298
+ self.upsample_rates = upsample_rates
299
+ self.upsample_initial_channel = upsample_initial_channel
300
+ self.upsample_kernel_sizes = upsample_kernel_sizes
301
+ self.segment_size = segment_size
302
+ self.gin_channels = gin_channels
303
+ self.ssl_dim = ssl_dim
304
+ self.emb_g = nn.Embedding(n_speakers, gin_channels)
305
+
306
+ self.enc_p_ = TextEncoder(ssl_dim, inter_channels, hidden_channels, 5, 1, 16,0, filter_channels, n_heads, p_dropout)
307
+ hps = {
308
+ "sampling_rate": 32000,
309
+ "inter_channels": 192,
310
+ "resblock": "1",
311
+ "resblock_kernel_sizes": [3, 7, 11],
312
+ "resblock_dilation_sizes": [[1, 3, 5], [1, 3, 5], [1, 3, 5]],
313
+ "upsample_rates": [10, 8, 2, 2],
314
+ "upsample_initial_channel": 512,
315
+ "upsample_kernel_sizes": [16, 16, 4, 4],
316
+ "gin_channels": 256,
317
+ }
318
+ self.dec = Generator(h=hps)
319
+ self.enc_q = Encoder(spec_channels, inter_channels, hidden_channels, 5, 1, 16, gin_channels=gin_channels)
320
+ self.flow = ResidualCouplingBlock(inter_channels, hidden_channels, 5, 1, 4, gin_channels=gin_channels)
321
+
322
+ def forward(self, c, c_lengths, f0, g=None):
323
+ g = self.emb_g(g.unsqueeze(0)).transpose(1,2)
324
+ z_p, m_p, logs_p, c_mask = self.enc_p_(c.transpose(1,2), c_lengths, f0=f0_to_coarse(f0))
325
+ z = self.flow(z_p, c_mask, g=g, reverse=True)
326
+ o = self.dec(z * c_mask, g=g, f0=f0.float())
327
+ return o
328
+
models.py ADDED
@@ -0,0 +1,351 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import copy
2
+ import math
3
+ import torch
4
+ from torch import nn
5
+ from torch.nn import functional as F
6
+
7
+ import attentions
8
+ import commons
9
+ import modules
10
+
11
+ from torch.nn import Conv1d, ConvTranspose1d, AvgPool1d, Conv2d
12
+ from torch.nn.utils import weight_norm, remove_weight_norm, spectral_norm
13
+ from commons import init_weights, get_padding
14
+ from vdecoder.hifigan.models import Generator
15
+ from utils import f0_to_coarse
16
+
17
+ class ResidualCouplingBlock(nn.Module):
18
+ def __init__(self,
19
+ channels,
20
+ hidden_channels,
21
+ kernel_size,
22
+ dilation_rate,
23
+ n_layers,
24
+ n_flows=4,
25
+ gin_channels=0):
26
+ super().__init__()
27
+ self.channels = channels
28
+ self.hidden_channels = hidden_channels
29
+ self.kernel_size = kernel_size
30
+ self.dilation_rate = dilation_rate
31
+ self.n_layers = n_layers
32
+ self.n_flows = n_flows
33
+ self.gin_channels = gin_channels
34
+
35
+ self.flows = nn.ModuleList()
36
+ for i in range(n_flows):
37
+ self.flows.append(modules.ResidualCouplingLayer(channels, hidden_channels, kernel_size, dilation_rate, n_layers, gin_channels=gin_channels, mean_only=True))
38
+ self.flows.append(modules.Flip())
39
+
40
+ def forward(self, x, x_mask, g=None, reverse=False):
41
+ if not reverse:
42
+ for flow in self.flows:
43
+ x, _ = flow(x, x_mask, g=g, reverse=reverse)
44
+ else:
45
+ for flow in reversed(self.flows):
46
+ x = flow(x, x_mask, g=g, reverse=reverse)
47
+ return x
48
+
49
+
50
+ class Encoder(nn.Module):
51
+ def __init__(self,
52
+ in_channels,
53
+ out_channels,
54
+ hidden_channels,
55
+ kernel_size,
56
+ dilation_rate,
57
+ n_layers,
58
+ gin_channels=0):
59
+ super().__init__()
60
+ self.in_channels = in_channels
61
+ self.out_channels = out_channels
62
+ self.hidden_channels = hidden_channels
63
+ self.kernel_size = kernel_size
64
+ self.dilation_rate = dilation_rate
65
+ self.n_layers = n_layers
66
+ self.gin_channels = gin_channels
67
+
68
+ self.pre = nn.Conv1d(in_channels, hidden_channels, 1)
69
+ self.enc = modules.WN(hidden_channels, kernel_size, dilation_rate, n_layers, gin_channels=gin_channels)
70
+ self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1)
71
+
72
+ def forward(self, x, x_lengths, g=None):
73
+ # print(x.shape,x_lengths.shape)
74
+ x_mask = torch.unsqueeze(commons.sequence_mask(x_lengths, x.size(2)), 1).to(x.dtype)
75
+ x = self.pre(x) * x_mask
76
+ x = self.enc(x, x_mask, g=g)
77
+ stats = self.proj(x) * x_mask
78
+ m, logs = torch.split(stats, self.out_channels, dim=1)
79
+ z = (m + torch.randn_like(m) * torch.exp(logs)) * x_mask
80
+ return z, m, logs, x_mask
81
+
82
+
83
+ class TextEncoder(nn.Module):
84
+ def __init__(self,
85
+ in_channels,
86
+ out_channels,
87
+ hidden_channels,
88
+ kernel_size,
89
+ dilation_rate,
90
+ n_layers,
91
+ gin_channels=0,
92
+ filter_channels=None,
93
+ n_heads=None,
94
+ p_dropout=None):
95
+ super().__init__()
96
+ self.in_channels = in_channels
97
+ self.out_channels = out_channels
98
+ self.hidden_channels = hidden_channels
99
+ self.kernel_size = kernel_size
100
+ self.dilation_rate = dilation_rate
101
+ self.n_layers = n_layers
102
+ self.gin_channels = gin_channels
103
+ self.pre = nn.Conv1d(in_channels, hidden_channels, 1)
104
+ self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1)
105
+ self.f0_emb = nn.Embedding(256, hidden_channels)
106
+
107
+ self.enc_ = attentions.Encoder(
108
+ hidden_channels,
109
+ filter_channels,
110
+ n_heads,
111
+ n_layers,
112
+ kernel_size,
113
+ p_dropout)
114
+
115
+ def forward(self, x, x_lengths, f0=None):
116
+ x_mask = torch.unsqueeze(commons.sequence_mask(x_lengths, x.size(2)), 1).to(x.dtype)
117
+ x = self.pre(x) * x_mask
118
+ x = x + self.f0_emb(f0).transpose(1,2)
119
+ x = self.enc_(x * x_mask, x_mask)
120
+ stats = self.proj(x) * x_mask
121
+ m, logs = torch.split(stats, self.out_channels, dim=1)
122
+ z = (m + torch.randn_like(m) * torch.exp(logs)) * x_mask
123
+
124
+ return z, m, logs, x_mask
125
+
126
+
127
+
128
+ class DiscriminatorP(torch.nn.Module):
129
+ def __init__(self, period, kernel_size=5, stride=3, use_spectral_norm=False):
130
+ super(DiscriminatorP, self).__init__()
131
+ self.period = period
132
+ self.use_spectral_norm = use_spectral_norm
133
+ norm_f = weight_norm if use_spectral_norm == False else spectral_norm
134
+ self.convs = nn.ModuleList([
135
+ norm_f(Conv2d(1, 32, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))),
136
+ norm_f(Conv2d(32, 128, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))),
137
+ norm_f(Conv2d(128, 512, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))),
138
+ norm_f(Conv2d(512, 1024, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))),
139
+ norm_f(Conv2d(1024, 1024, (kernel_size, 1), 1, padding=(get_padding(kernel_size, 1), 0))),
140
+ ])
141
+ self.conv_post = norm_f(Conv2d(1024, 1, (3, 1), 1, padding=(1, 0)))
142
+
143
+ def forward(self, x):
144
+ fmap = []
145
+
146
+ # 1d to 2d
147
+ b, c, t = x.shape
148
+ if t % self.period != 0: # pad first
149
+ n_pad = self.period - (t % self.period)
150
+ x = F.pad(x, (0, n_pad), "reflect")
151
+ t = t + n_pad
152
+ x = x.view(b, c, t // self.period, self.period)
153
+
154
+ for l in self.convs:
155
+ x = l(x)
156
+ x = F.leaky_relu(x, modules.LRELU_SLOPE)
157
+ fmap.append(x)
158
+ x = self.conv_post(x)
159
+ fmap.append(x)
160
+ x = torch.flatten(x, 1, -1)
161
+
162
+ return x, fmap
163
+
164
+
165
+ class DiscriminatorS(torch.nn.Module):
166
+ def __init__(self, use_spectral_norm=False):
167
+ super(DiscriminatorS, self).__init__()
168
+ norm_f = weight_norm if use_spectral_norm == False else spectral_norm
169
+ self.convs = nn.ModuleList([
170
+ norm_f(Conv1d(1, 16, 15, 1, padding=7)),
171
+ norm_f(Conv1d(16, 64, 41, 4, groups=4, padding=20)),
172
+ norm_f(Conv1d(64, 256, 41, 4, groups=16, padding=20)),
173
+ norm_f(Conv1d(256, 1024, 41, 4, groups=64, padding=20)),
174
+ norm_f(Conv1d(1024, 1024, 41, 4, groups=256, padding=20)),
175
+ norm_f(Conv1d(1024, 1024, 5, 1, padding=2)),
176
+ ])
177
+ self.conv_post = norm_f(Conv1d(1024, 1, 3, 1, padding=1))
178
+
179
+ def forward(self, x):
180
+ fmap = []
181
+
182
+ for l in self.convs:
183
+ x = l(x)
184
+ x = F.leaky_relu(x, modules.LRELU_SLOPE)
185
+ fmap.append(x)
186
+ x = self.conv_post(x)
187
+ fmap.append(x)
188
+ x = torch.flatten(x, 1, -1)
189
+
190
+ return x, fmap
191
+
192
+
193
+ class MultiPeriodDiscriminator(torch.nn.Module):
194
+ def __init__(self, use_spectral_norm=False):
195
+ super(MultiPeriodDiscriminator, self).__init__()
196
+ periods = [2,3,5,7,11]
197
+
198
+ discs = [DiscriminatorS(use_spectral_norm=use_spectral_norm)]
199
+ discs = discs + [DiscriminatorP(i, use_spectral_norm=use_spectral_norm) for i in periods]
200
+ self.discriminators = nn.ModuleList(discs)
201
+
202
+ def forward(self, y, y_hat):
203
+ y_d_rs = []
204
+ y_d_gs = []
205
+ fmap_rs = []
206
+ fmap_gs = []
207
+ for i, d in enumerate(self.discriminators):
208
+ y_d_r, fmap_r = d(y)
209
+ y_d_g, fmap_g = d(y_hat)
210
+ y_d_rs.append(y_d_r)
211
+ y_d_gs.append(y_d_g)
212
+ fmap_rs.append(fmap_r)
213
+ fmap_gs.append(fmap_g)
214
+
215
+ return y_d_rs, y_d_gs, fmap_rs, fmap_gs
216
+
217
+
218
+ class SpeakerEncoder(torch.nn.Module):
219
+ def __init__(self, mel_n_channels=80, model_num_layers=3, model_hidden_size=256, model_embedding_size=256):
220
+ super(SpeakerEncoder, self).__init__()
221
+ self.lstm = nn.LSTM(mel_n_channels, model_hidden_size, model_num_layers, batch_first=True)
222
+ self.linear = nn.Linear(model_hidden_size, model_embedding_size)
223
+ self.relu = nn.ReLU()
224
+
225
+ def forward(self, mels):
226
+ self.lstm.flatten_parameters()
227
+ _, (hidden, _) = self.lstm(mels)
228
+ embeds_raw = self.relu(self.linear(hidden[-1]))
229
+ return embeds_raw / torch.norm(embeds_raw, dim=1, keepdim=True)
230
+
231
+ def compute_partial_slices(self, total_frames, partial_frames, partial_hop):
232
+ mel_slices = []
233
+ for i in range(0, total_frames-partial_frames, partial_hop):
234
+ mel_range = torch.arange(i, i+partial_frames)
235
+ mel_slices.append(mel_range)
236
+
237
+ return mel_slices
238
+
239
+ def embed_utterance(self, mel, partial_frames=128, partial_hop=64):
240
+ mel_len = mel.size(1)
241
+ last_mel = mel[:,-partial_frames:]
242
+
243
+ if mel_len > partial_frames:
244
+ mel_slices = self.compute_partial_slices(mel_len, partial_frames, partial_hop)
245
+ mels = list(mel[:,s] for s in mel_slices)
246
+ mels.append(last_mel)
247
+ mels = torch.stack(tuple(mels), 0).squeeze(1)
248
+
249
+ with torch.no_grad():
250
+ partial_embeds = self(mels)
251
+ embed = torch.mean(partial_embeds, axis=0).unsqueeze(0)
252
+ #embed = embed / torch.linalg.norm(embed, 2)
253
+ else:
254
+ with torch.no_grad():
255
+ embed = self(last_mel)
256
+
257
+ return embed
258
+
259
+
260
+ class SynthesizerTrn(nn.Module):
261
+ """
262
+ Synthesizer for Training
263
+ """
264
+
265
+ def __init__(self,
266
+ spec_channels,
267
+ segment_size,
268
+ inter_channels,
269
+ hidden_channels,
270
+ filter_channels,
271
+ n_heads,
272
+ n_layers,
273
+ kernel_size,
274
+ p_dropout,
275
+ resblock,
276
+ resblock_kernel_sizes,
277
+ resblock_dilation_sizes,
278
+ upsample_rates,
279
+ upsample_initial_channel,
280
+ upsample_kernel_sizes,
281
+ gin_channels,
282
+ ssl_dim,
283
+ n_speakers,
284
+ **kwargs):
285
+
286
+ super().__init__()
287
+ self.spec_channels = spec_channels
288
+ self.inter_channels = inter_channels
289
+ self.hidden_channels = hidden_channels
290
+ self.filter_channels = filter_channels
291
+ self.n_heads = n_heads
292
+ self.n_layers = n_layers
293
+ self.kernel_size = kernel_size
294
+ self.p_dropout = p_dropout
295
+ self.resblock = resblock
296
+ self.resblock_kernel_sizes = resblock_kernel_sizes
297
+ self.resblock_dilation_sizes = resblock_dilation_sizes
298
+ self.upsample_rates = upsample_rates
299
+ self.upsample_initial_channel = upsample_initial_channel
300
+ self.upsample_kernel_sizes = upsample_kernel_sizes
301
+ self.segment_size = segment_size
302
+ self.gin_channels = gin_channels
303
+ self.ssl_dim = ssl_dim
304
+ self.emb_g = nn.Embedding(n_speakers, gin_channels)
305
+
306
+ self.enc_p_ = TextEncoder(ssl_dim, inter_channels, hidden_channels, 5, 1, 16,0, filter_channels, n_heads, p_dropout)
307
+ hps = {
308
+ "sampling_rate": 32000,
309
+ "inter_channels": 192,
310
+ "resblock": "1",
311
+ "resblock_kernel_sizes": [3, 7, 11],
312
+ "resblock_dilation_sizes": [[1, 3, 5], [1, 3, 5], [1, 3, 5]],
313
+ "upsample_rates": [10, 8, 2, 2],
314
+ "upsample_initial_channel": 512,
315
+ "upsample_kernel_sizes": [16, 16, 4, 4],
316
+ "gin_channels": 256,
317
+ }
318
+ self.dec = Generator(h=hps)
319
+ self.enc_q = Encoder(spec_channels, inter_channels, hidden_channels, 5, 1, 16, gin_channels=gin_channels)
320
+ self.flow = ResidualCouplingBlock(inter_channels, hidden_channels, 5, 1, 4, gin_channels=gin_channels)
321
+
322
+ def forward(self, c, f0, spec, g=None, mel=None, c_lengths=None, spec_lengths=None):
323
+ if c_lengths == None:
324
+ c_lengths = (torch.ones(c.size(0)) * c.size(-1)).to(c.device)
325
+ if spec_lengths == None:
326
+ spec_lengths = (torch.ones(spec.size(0)) * spec.size(-1)).to(spec.device)
327
+
328
+ g = self.emb_g(g).transpose(1,2)
329
+
330
+ z_ptemp, m_p, logs_p, _ = self.enc_p_(c, c_lengths, f0=f0_to_coarse(f0))
331
+ z, m_q, logs_q, spec_mask = self.enc_q(spec, spec_lengths, g=g)
332
+
333
+ z_p = self.flow(z, spec_mask, g=g)
334
+ z_slice, pitch_slice, ids_slice = commons.rand_slice_segments_with_pitch(z, f0, spec_lengths, self.segment_size)
335
+
336
+ # o = self.dec(z_slice, g=g)
337
+ o = self.dec(z_slice, g=g, f0=pitch_slice)
338
+
339
+ return o, ids_slice, spec_mask, (z, z_p, m_p, logs_p, m_q, logs_q)
340
+
341
+ def infer(self, c, f0, g=None, mel=None, c_lengths=None):
342
+ if c_lengths == None:
343
+ c_lengths = (torch.ones(c.size(0)) * c.size(-1)).to(c.device)
344
+ g = self.emb_g(g).transpose(1,2)
345
+
346
+ z_p, m_p, logs_p, c_mask = self.enc_p_(c, c_lengths, f0=f0_to_coarse(f0))
347
+ z = self.flow(z_p, c_mask, g=g, reverse=True)
348
+
349
+ o = self.dec(z * c_mask, g=g, f0=f0)
350
+
351
+ return o
modules.py ADDED
@@ -0,0 +1,342 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import copy
2
+ import math
3
+ import numpy as np
4
+ import scipy
5
+ import torch
6
+ from torch import nn
7
+ from torch.nn import functional as F
8
+
9
+ from torch.nn import Conv1d, ConvTranspose1d, AvgPool1d, Conv2d
10
+ from torch.nn.utils import weight_norm, remove_weight_norm
11
+
12
+ import commons
13
+ from commons import init_weights, get_padding
14
+
15
+
16
+ LRELU_SLOPE = 0.1
17
+
18
+
19
+ class LayerNorm(nn.Module):
20
+ def __init__(self, channels, eps=1e-5):
21
+ super().__init__()
22
+ self.channels = channels
23
+ self.eps = eps
24
+
25
+ self.gamma = nn.Parameter(torch.ones(channels))
26
+ self.beta = nn.Parameter(torch.zeros(channels))
27
+
28
+ def forward(self, x):
29
+ x = x.transpose(1, -1)
30
+ x = F.layer_norm(x, (self.channels,), self.gamma, self.beta, self.eps)
31
+ return x.transpose(1, -1)
32
+
33
+
34
+ class ConvReluNorm(nn.Module):
35
+ def __init__(self, in_channels, hidden_channels, out_channels, kernel_size, n_layers, p_dropout):
36
+ super().__init__()
37
+ self.in_channels = in_channels
38
+ self.hidden_channels = hidden_channels
39
+ self.out_channels = out_channels
40
+ self.kernel_size = kernel_size
41
+ self.n_layers = n_layers
42
+ self.p_dropout = p_dropout
43
+ assert n_layers > 1, "Number of layers should be larger than 0."
44
+
45
+ self.conv_layers = nn.ModuleList()
46
+ self.norm_layers = nn.ModuleList()
47
+ self.conv_layers.append(nn.Conv1d(in_channels, hidden_channels, kernel_size, padding=kernel_size//2))
48
+ self.norm_layers.append(LayerNorm(hidden_channels))
49
+ self.relu_drop = nn.Sequential(
50
+ nn.ReLU(),
51
+ nn.Dropout(p_dropout))
52
+ for _ in range(n_layers-1):
53
+ self.conv_layers.append(nn.Conv1d(hidden_channels, hidden_channels, kernel_size, padding=kernel_size//2))
54
+ self.norm_layers.append(LayerNorm(hidden_channels))
55
+ self.proj = nn.Conv1d(hidden_channels, out_channels, 1)
56
+ self.proj.weight.data.zero_()
57
+ self.proj.bias.data.zero_()
58
+
59
+ def forward(self, x, x_mask):
60
+ x_org = x
61
+ for i in range(self.n_layers):
62
+ x = self.conv_layers[i](x * x_mask)
63
+ x = self.norm_layers[i](x)
64
+ x = self.relu_drop(x)
65
+ x = x_org + self.proj(x)
66
+ return x * x_mask
67
+
68
+
69
+ class DDSConv(nn.Module):
70
+ """
71
+ Dialted and Depth-Separable Convolution
72
+ """
73
+ def __init__(self, channels, kernel_size, n_layers, p_dropout=0.):
74
+ super().__init__()
75
+ self.channels = channels
76
+ self.kernel_size = kernel_size
77
+ self.n_layers = n_layers
78
+ self.p_dropout = p_dropout
79
+
80
+ self.drop = nn.Dropout(p_dropout)
81
+ self.convs_sep = nn.ModuleList()
82
+ self.convs_1x1 = nn.ModuleList()
83
+ self.norms_1 = nn.ModuleList()
84
+ self.norms_2 = nn.ModuleList()
85
+ for i in range(n_layers):
86
+ dilation = kernel_size ** i
87
+ padding = (kernel_size * dilation - dilation) // 2
88
+ self.convs_sep.append(nn.Conv1d(channels, channels, kernel_size,
89
+ groups=channels, dilation=dilation, padding=padding
90
+ ))
91
+ self.convs_1x1.append(nn.Conv1d(channels, channels, 1))
92
+ self.norms_1.append(LayerNorm(channels))
93
+ self.norms_2.append(LayerNorm(channels))
94
+
95
+ def forward(self, x, x_mask, g=None):
96
+ if g is not None:
97
+ x = x + g
98
+ for i in range(self.n_layers):
99
+ y = self.convs_sep[i](x * x_mask)
100
+ y = self.norms_1[i](y)
101
+ y = F.gelu(y)
102
+ y = self.convs_1x1[i](y)
103
+ y = self.norms_2[i](y)
104
+ y = F.gelu(y)
105
+ y = self.drop(y)
106
+ x = x + y
107
+ return x * x_mask
108
+
109
+
110
+ class WN(torch.nn.Module):
111
+ def __init__(self, hidden_channels, kernel_size, dilation_rate, n_layers, gin_channels=0, p_dropout=0):
112
+ super(WN, self).__init__()
113
+ assert(kernel_size % 2 == 1)
114
+ self.hidden_channels =hidden_channels
115
+ self.kernel_size = kernel_size,
116
+ self.dilation_rate = dilation_rate
117
+ self.n_layers = n_layers
118
+ self.gin_channels = gin_channels
119
+ self.p_dropout = p_dropout
120
+
121
+ self.in_layers = torch.nn.ModuleList()
122
+ self.res_skip_layers = torch.nn.ModuleList()
123
+ self.drop = nn.Dropout(p_dropout)
124
+
125
+ if gin_channels != 0:
126
+ cond_layer = torch.nn.Conv1d(gin_channels, 2*hidden_channels*n_layers, 1)
127
+ self.cond_layer = torch.nn.utils.weight_norm(cond_layer, name='weight')
128
+
129
+ for i in range(n_layers):
130
+ dilation = dilation_rate ** i
131
+ padding = int((kernel_size * dilation - dilation) / 2)
132
+ in_layer = torch.nn.Conv1d(hidden_channels, 2*hidden_channels, kernel_size,
133
+ dilation=dilation, padding=padding)
134
+ in_layer = torch.nn.utils.weight_norm(in_layer, name='weight')
135
+ self.in_layers.append(in_layer)
136
+
137
+ # last one is not necessary
138
+ if i < n_layers - 1:
139
+ res_skip_channels = 2 * hidden_channels
140
+ else:
141
+ res_skip_channels = hidden_channels
142
+
143
+ res_skip_layer = torch.nn.Conv1d(hidden_channels, res_skip_channels, 1)
144
+ res_skip_layer = torch.nn.utils.weight_norm(res_skip_layer, name='weight')
145
+ self.res_skip_layers.append(res_skip_layer)
146
+
147
+ def forward(self, x, x_mask, g=None, **kwargs):
148
+ output = torch.zeros_like(x)
149
+ n_channels_tensor = torch.IntTensor([self.hidden_channels])
150
+
151
+ if g is not None:
152
+ g = self.cond_layer(g)
153
+
154
+ for i in range(self.n_layers):
155
+ x_in = self.in_layers[i](x)
156
+ if g is not None:
157
+ cond_offset = i * 2 * self.hidden_channels
158
+ g_l = g[:,cond_offset:cond_offset+2*self.hidden_channels,:]
159
+ else:
160
+ g_l = torch.zeros_like(x_in)
161
+
162
+ acts = commons.fused_add_tanh_sigmoid_multiply(
163
+ x_in,
164
+ g_l,
165
+ n_channels_tensor)
166
+ acts = self.drop(acts)
167
+
168
+ res_skip_acts = self.res_skip_layers[i](acts)
169
+ if i < self.n_layers - 1:
170
+ res_acts = res_skip_acts[:,:self.hidden_channels,:]
171
+ x = (x + res_acts) * x_mask
172
+ output = output + res_skip_acts[:,self.hidden_channels:,:]
173
+ else:
174
+ output = output + res_skip_acts
175
+ return output * x_mask
176
+
177
+ def remove_weight_norm(self):
178
+ if self.gin_channels != 0:
179
+ torch.nn.utils.remove_weight_norm(self.cond_layer)
180
+ for l in self.in_layers:
181
+ torch.nn.utils.remove_weight_norm(l)
182
+ for l in self.res_skip_layers:
183
+ torch.nn.utils.remove_weight_norm(l)
184
+
185
+
186
+ class ResBlock1(torch.nn.Module):
187
+ def __init__(self, channels, kernel_size=3, dilation=(1, 3, 5)):
188
+ super(ResBlock1, self).__init__()
189
+ self.convs1 = nn.ModuleList([
190
+ weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[0],
191
+ padding=get_padding(kernel_size, dilation[0]))),
192
+ weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[1],
193
+ padding=get_padding(kernel_size, dilation[1]))),
194
+ weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[2],
195
+ padding=get_padding(kernel_size, dilation[2])))
196
+ ])
197
+ self.convs1.apply(init_weights)
198
+
199
+ self.convs2 = nn.ModuleList([
200
+ weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
201
+ padding=get_padding(kernel_size, 1))),
202
+ weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
203
+ padding=get_padding(kernel_size, 1))),
204
+ weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
205
+ padding=get_padding(kernel_size, 1)))
206
+ ])
207
+ self.convs2.apply(init_weights)
208
+
209
+ def forward(self, x, x_mask=None):
210
+ for c1, c2 in zip(self.convs1, self.convs2):
211
+ xt = F.leaky_relu(x, LRELU_SLOPE)
212
+ if x_mask is not None:
213
+ xt = xt * x_mask
214
+ xt = c1(xt)
215
+ xt = F.leaky_relu(xt, LRELU_SLOPE)
216
+ if x_mask is not None:
217
+ xt = xt * x_mask
218
+ xt = c2(xt)
219
+ x = xt + x
220
+ if x_mask is not None:
221
+ x = x * x_mask
222
+ return x
223
+
224
+ def remove_weight_norm(self):
225
+ for l in self.convs1:
226
+ remove_weight_norm(l)
227
+ for l in self.convs2:
228
+ remove_weight_norm(l)
229
+
230
+
231
+ class ResBlock2(torch.nn.Module):
232
+ def __init__(self, channels, kernel_size=3, dilation=(1, 3)):
233
+ super(ResBlock2, self).__init__()
234
+ self.convs = nn.ModuleList([
235
+ weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[0],
236
+ padding=get_padding(kernel_size, dilation[0]))),
237
+ weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[1],
238
+ padding=get_padding(kernel_size, dilation[1])))
239
+ ])
240
+ self.convs.apply(init_weights)
241
+
242
+ def forward(self, x, x_mask=None):
243
+ for c in self.convs:
244
+ xt = F.leaky_relu(x, LRELU_SLOPE)
245
+ if x_mask is not None:
246
+ xt = xt * x_mask
247
+ xt = c(xt)
248
+ x = xt + x
249
+ if x_mask is not None:
250
+ x = x * x_mask
251
+ return x
252
+
253
+ def remove_weight_norm(self):
254
+ for l in self.convs:
255
+ remove_weight_norm(l)
256
+
257
+
258
+ class Log(nn.Module):
259
+ def forward(self, x, x_mask, reverse=False, **kwargs):
260
+ if not reverse:
261
+ y = torch.log(torch.clamp_min(x, 1e-5)) * x_mask
262
+ logdet = torch.sum(-y, [1, 2])
263
+ return y, logdet
264
+ else:
265
+ x = torch.exp(x) * x_mask
266
+ return x
267
+
268
+
269
+ class Flip(nn.Module):
270
+ def forward(self, x, *args, reverse=False, **kwargs):
271
+ x = torch.flip(x, [1])
272
+ if not reverse:
273
+ logdet = torch.zeros(x.size(0)).to(dtype=x.dtype, device=x.device)
274
+ return x, logdet
275
+ else:
276
+ return x
277
+
278
+
279
+ class ElementwiseAffine(nn.Module):
280
+ def __init__(self, channels):
281
+ super().__init__()
282
+ self.channels = channels
283
+ self.m = nn.Parameter(torch.zeros(channels,1))
284
+ self.logs = nn.Parameter(torch.zeros(channels,1))
285
+
286
+ def forward(self, x, x_mask, reverse=False, **kwargs):
287
+ if not reverse:
288
+ y = self.m + torch.exp(self.logs) * x
289
+ y = y * x_mask
290
+ logdet = torch.sum(self.logs * x_mask, [1,2])
291
+ return y, logdet
292
+ else:
293
+ x = (x - self.m) * torch.exp(-self.logs) * x_mask
294
+ return x
295
+
296
+
297
+ class ResidualCouplingLayer(nn.Module):
298
+ def __init__(self,
299
+ channels,
300
+ hidden_channels,
301
+ kernel_size,
302
+ dilation_rate,
303
+ n_layers,
304
+ p_dropout=0,
305
+ gin_channels=0,
306
+ mean_only=False):
307
+ assert channels % 2 == 0, "channels should be divisible by 2"
308
+ super().__init__()
309
+ self.channels = channels
310
+ self.hidden_channels = hidden_channels
311
+ self.kernel_size = kernel_size
312
+ self.dilation_rate = dilation_rate
313
+ self.n_layers = n_layers
314
+ self.half_channels = channels // 2
315
+ self.mean_only = mean_only
316
+
317
+ self.pre = nn.Conv1d(self.half_channels, hidden_channels, 1)
318
+ self.enc = WN(hidden_channels, kernel_size, dilation_rate, n_layers, p_dropout=p_dropout, gin_channels=gin_channels)
319
+ self.post = nn.Conv1d(hidden_channels, self.half_channels * (2 - mean_only), 1)
320
+ self.post.weight.data.zero_()
321
+ self.post.bias.data.zero_()
322
+
323
+ def forward(self, x, x_mask, g=None, reverse=False):
324
+ x0, x1 = torch.split(x, [self.half_channels]*2, 1)
325
+ h = self.pre(x0) * x_mask
326
+ h = self.enc(h, x_mask, g=g)
327
+ stats = self.post(h) * x_mask
328
+ if not self.mean_only:
329
+ m, logs = torch.split(stats, [self.half_channels]*2, 1)
330
+ else:
331
+ m = stats
332
+ logs = torch.zeros_like(m)
333
+
334
+ if not reverse:
335
+ x1 = m + x1 * torch.exp(logs) * x_mask
336
+ x = torch.cat([x0, x1], 1)
337
+ logdet = torch.sum(logs, [1,2])
338
+ return x, logdet
339
+ else:
340
+ x1 = (x1 - m) * torch.exp(-logs) * x_mask
341
+ x = torch.cat([x0, x1], 1)
342
+ return x
onnx_export.py ADDED
@@ -0,0 +1,73 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import argparse
2
+ import time
3
+ import numpy as np
4
+ import onnx
5
+ from onnxsim import simplify
6
+ import onnxruntime as ort
7
+ import onnxoptimizer
8
+ import torch
9
+ from model_onnx import SynthesizerTrn
10
+ import utils
11
+ from hubert import hubert_model_onnx
12
+
13
+ def main(HubertExport,NetExport):
14
+
15
+ path = "NyaruTaffy"
16
+
17
+ if(HubertExport):
18
+ device = torch.device("cuda")
19
+ hubert_soft = hubert_model_onnx.hubert_soft("hubert/model.pt")
20
+ test_input = torch.rand(1, 1, 16000)
21
+ input_names = ["source"]
22
+ output_names = ["embed"]
23
+ torch.onnx.export(hubert_soft.to(device),
24
+ test_input.to(device),
25
+ "hubert3.0.onnx",
26
+ dynamic_axes={
27
+ "source": {
28
+ 2: "sample_length"
29
+ }
30
+ },
31
+ verbose=False,
32
+ opset_version=13,
33
+ input_names=input_names,
34
+ output_names=output_names)
35
+ if(NetExport):
36
+ device = torch.device("cuda")
37
+ hps = utils.get_hparams_from_file(f"checkpoints/{path}/config.json")
38
+ SVCVITS = SynthesizerTrn(
39
+ hps.data.filter_length // 2 + 1,
40
+ hps.train.segment_size // hps.data.hop_length,
41
+ **hps.model)
42
+ _ = utils.load_checkpoint(f"checkpoints/{path}/model.pth", SVCVITS, None)
43
+ _ = SVCVITS.eval().to(device)
44
+ for i in SVCVITS.parameters():
45
+ i.requires_grad = False
46
+ test_hidden_unit = torch.rand(1, 50, 256)
47
+ test_lengths = torch.LongTensor([50])
48
+ test_pitch = torch.rand(1, 50)
49
+ test_sid = torch.LongTensor([0])
50
+ input_names = ["hidden_unit", "lengths", "pitch", "sid"]
51
+ output_names = ["audio", ]
52
+ SVCVITS.eval()
53
+ torch.onnx.export(SVCVITS,
54
+ (
55
+ test_hidden_unit.to(device),
56
+ test_lengths.to(device),
57
+ test_pitch.to(device),
58
+ test_sid.to(device)
59
+ ),
60
+ f"checkpoints/{path}/model.onnx",
61
+ dynamic_axes={
62
+ "hidden_unit": [0, 1],
63
+ "pitch": [1]
64
+ },
65
+ do_constant_folding=False,
66
+ opset_version=16,
67
+ verbose=False,
68
+ input_names=input_names,
69
+ output_names=output_names)
70
+
71
+
72
+ if __name__ == '__main__':
73
+ main(False,True)
preprocess_flist_config.py ADDED
@@ -0,0 +1,125 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import argparse
3
+ import re
4
+
5
+ from tqdm import tqdm
6
+ from random import shuffle
7
+ import json
8
+ config_template = {
9
+ "train": {
10
+ "log_interval": 200,
11
+ "eval_interval": 1000,
12
+ "seed": 1234,
13
+ "epochs": 10000,
14
+ "learning_rate": 1e-4,
15
+ "betas": [0.8, 0.99],
16
+ "eps": 1e-9,
17
+ "batch_size": 12,
18
+ "fp16_run": False,
19
+ "lr_decay": 0.999875,
20
+ "segment_size": 17920,
21
+ "init_lr_ratio": 1,
22
+ "warmup_epochs": 0,
23
+ "c_mel": 45,
24
+ "c_kl": 1.0,
25
+ "use_sr": True,
26
+ "max_speclen": 384,
27
+ "port": "8001"
28
+ },
29
+ "data": {
30
+ "training_files":"filelists/train.txt",
31
+ "validation_files":"filelists/val.txt",
32
+ "max_wav_value": 32768.0,
33
+ "sampling_rate": 32000,
34
+ "filter_length": 1280,
35
+ "hop_length": 320,
36
+ "win_length": 1280,
37
+ "n_mel_channels": 80,
38
+ "mel_fmin": 0.0,
39
+ "mel_fmax": None
40
+ },
41
+ "model": {
42
+ "inter_channels": 192,
43
+ "hidden_channels": 192,
44
+ "filter_channels": 768,
45
+ "n_heads": 2,
46
+ "n_layers": 6,
47
+ "kernel_size": 3,
48
+ "p_dropout": 0.1,
49
+ "resblock": "1",
50
+ "resblock_kernel_sizes": [3,7,11],
51
+ "resblock_dilation_sizes": [[1,3,5], [1,3,5], [1,3,5]],
52
+ "upsample_rates": [10,8,2,2],
53
+ "upsample_initial_channel": 512,
54
+ "upsample_kernel_sizes": [16,16,4,4],
55
+ "n_layers_q": 3,
56
+ "use_spectral_norm": False,
57
+ "gin_channels": 256,
58
+ "ssl_dim": 256,
59
+ "n_speakers": 0,
60
+ },
61
+ "spk":{
62
+ "nen": 0,
63
+ "paimon": 1,
64
+ "yunhao": 2
65
+ }
66
+ }
67
+
68
+ pattern = re.compile(r'^[\.a-zA-Z0-9_\/]+$')
69
+
70
+ if __name__ == "__main__":
71
+ parser = argparse.ArgumentParser()
72
+ parser.add_argument("--train_list", type=str, default="./filelists/train.txt", help="path to train list")
73
+ parser.add_argument("--val_list", type=str, default="./filelists/val.txt", help="path to val list")
74
+ parser.add_argument("--test_list", type=str, default="./filelists/test.txt", help="path to test list")
75
+ parser.add_argument("--source_dir", type=str, default="./dataset/32k", help="path to source dir")
76
+ args = parser.parse_args()
77
+
78
+ train = []
79
+ val = []
80
+ test = []
81
+ idx = 0
82
+ spk_dict = {}
83
+ spk_id = 0
84
+ for speaker in tqdm(os.listdir(args.source_dir)):
85
+ spk_dict[speaker] = spk_id
86
+ spk_id += 1
87
+ wavs = ["/".join([args.source_dir, speaker, i]) for i in os.listdir(os.path.join(args.source_dir, speaker))]
88
+ for wavpath in wavs:
89
+ if not pattern.match(wavpath):
90
+ print(f"warning:文件名{wavpath}中包含非字母数字下划线,可能会导致错误。(也可能不会)")
91
+ if len(wavs) < 10:
92
+ print(f"warning:{speaker}数据集数量小于10条,请补充数据")
93
+ wavs = [i for i in wavs if i.endswith("wav")]
94
+ shuffle(wavs)
95
+ train += wavs[2:-2]
96
+ val += wavs[:2]
97
+ test += wavs[-2:]
98
+ n_speakers = len(spk_dict.keys())*2
99
+ shuffle(train)
100
+ shuffle(val)
101
+ shuffle(test)
102
+
103
+ print("Writing", args.train_list)
104
+ with open(args.train_list, "w") as f:
105
+ for fname in tqdm(train):
106
+ wavpath = fname
107
+ f.write(wavpath + "\n")
108
+
109
+ print("Writing", args.val_list)
110
+ with open(args.val_list, "w") as f:
111
+ for fname in tqdm(val):
112
+ wavpath = fname
113
+ f.write(wavpath + "\n")
114
+
115
+ print("Writing", args.test_list)
116
+ with open(args.test_list, "w") as f:
117
+ for fname in tqdm(test):
118
+ wavpath = fname
119
+ f.write(wavpath + "\n")
120
+
121
+ config_template["model"]["n_speakers"] = n_speakers
122
+ config_template["spk"] = spk_dict
123
+ print("Writing configs/config.json")
124
+ with open("configs/config.json", "w") as f:
125
+ json.dump(config_template, f, indent=2)
preprocess_hubert_f0.py ADDED
@@ -0,0 +1,106 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import argparse
3
+
4
+ import torch
5
+ import json
6
+ from glob import glob
7
+
8
+ from pyworld import pyworld
9
+ from tqdm import tqdm
10
+ from scipy.io import wavfile
11
+
12
+ import utils
13
+ from mel_processing import mel_spectrogram_torch
14
+ #import h5py
15
+ import logging
16
+ logging.getLogger('numba').setLevel(logging.WARNING)
17
+
18
+ import parselmouth
19
+ import librosa
20
+ import numpy as np
21
+
22
+
23
+ def get_f0(path,p_len=None, f0_up_key=0):
24
+ x, _ = librosa.load(path, 32000)
25
+ if p_len is None:
26
+ p_len = x.shape[0]//320
27
+ else:
28
+ assert abs(p_len-x.shape[0]//320) < 3, (path, p_len, x.shape)
29
+ time_step = 320 / 32000 * 1000
30
+ f0_min = 50
31
+ f0_max = 1100
32
+ f0_mel_min = 1127 * np.log(1 + f0_min / 700)
33
+ f0_mel_max = 1127 * np.log(1 + f0_max / 700)
34
+
35
+ f0 = parselmouth.Sound(x, 32000).to_pitch_ac(
36
+ time_step=time_step / 1000, voicing_threshold=0.6,
37
+ pitch_floor=f0_min, pitch_ceiling=f0_max).selected_array['frequency']
38
+
39
+ pad_size=(p_len - len(f0) + 1) // 2
40
+ if(pad_size>0 or p_len - len(f0) - pad_size>0):
41
+ f0 = np.pad(f0,[[pad_size,p_len - len(f0) - pad_size]], mode='constant')
42
+
43
+ f0bak = f0.copy()
44
+ f0 *= pow(2, f0_up_key / 12)
45
+ f0_mel = 1127 * np.log(1 + f0 / 700)
46
+ f0_mel[f0_mel > 0] = (f0_mel[f0_mel > 0] - f0_mel_min) * 254 / (f0_mel_max - f0_mel_min) + 1
47
+ f0_mel[f0_mel <= 1] = 1
48
+ f0_mel[f0_mel > 255] = 255
49
+ f0_coarse = np.rint(f0_mel).astype(np.int)
50
+ return f0_coarse, f0bak
51
+
52
+ def resize2d(x, target_len):
53
+ source = np.array(x)
54
+ source[source<0.001] = np.nan
55
+ target = np.interp(np.arange(0, len(source)*target_len, len(source))/ target_len, np.arange(0, len(source)), source)
56
+ res = np.nan_to_num(target)
57
+ return res
58
+
59
+ def compute_f0(path, c_len):
60
+ x, sr = librosa.load(path, sr=32000)
61
+ f0, t = pyworld.dio(
62
+ x.astype(np.double),
63
+ fs=sr,
64
+ f0_ceil=800,
65
+ frame_period=1000 * 320 / sr,
66
+ )
67
+ f0 = pyworld.stonemask(x.astype(np.double), f0, t, 32000)
68
+ for index, pitch in enumerate(f0):
69
+ f0[index] = round(pitch, 1)
70
+ assert abs(c_len - x.shape[0]//320) < 3, (c_len, f0.shape)
71
+
72
+ return None, resize2d(f0, c_len)
73
+
74
+
75
+ def process(filename):
76
+ print(filename)
77
+ save_name = filename+".soft.pt"
78
+ if not os.path.exists(save_name):
79
+ devive = torch.device("cuda" if torch.cuda.is_available() else "cpu")
80
+ wav, _ = librosa.load(filename, sr=16000)
81
+ wav = torch.from_numpy(wav).unsqueeze(0).to(devive)
82
+ c = utils.get_hubert_content(hmodel, wav)
83
+ torch.save(c.cpu(), save_name)
84
+ else:
85
+ c = torch.load(save_name)
86
+ f0path = filename+".f0.npy"
87
+ if not os.path.exists(f0path):
88
+ cf0, f0 = compute_f0(filename, c.shape[-1] * 2)
89
+ np.save(f0path, f0)
90
+
91
+
92
+
93
+ if __name__ == "__main__":
94
+ parser = argparse.ArgumentParser()
95
+ parser.add_argument("--in_dir", type=str, default="dataset/32k", help="path to input dir")
96
+ args = parser.parse_args()
97
+
98
+ print("Loading hubert for content...")
99
+ hmodel = utils.get_hubert_model(0 if torch.cuda.is_available() else None)
100
+ print("Loaded hubert.")
101
+
102
+ filenames = glob(f'{args.in_dir}/*/*.wav', recursive=True)#[:10]
103
+
104
+ for filename in tqdm(filenames):
105
+ process(filename)
106
+
raw/put_raw_wav_here ADDED
File without changes
requirements.txt ADDED
@@ -0,0 +1,21 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Flask==2.1.2
2
+ Flask_Cors==3.0.10
3
+ gradio==3.4.1
4
+ numpy==1.19.2
5
+ playsound==1.3.0
6
+ PyAudio==0.2.12
7
+ pydub==0.25.1
8
+ pyworld==0.3.0
9
+ requests==2.28.1
10
+ scipy==1.7.3
11
+ sounddevice==0.4.5
12
+ SoundFile==0.10.3.post1
13
+ starlette==0.19.1
14
+ torch==1.10.0+cu113
15
+ torchaudio==0.10.0+cu113
16
+ tqdm==4.63.0
17
+ scikit-maad
18
+ praat-parselmouth
19
+ onnx
20
+ onnxsim
21
+ onnxoptimizer
resample.py ADDED
@@ -0,0 +1,48 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import argparse
3
+ import librosa
4
+ import numpy as np
5
+ from multiprocessing import Pool, cpu_count
6
+ from scipy.io import wavfile
7
+ from tqdm import tqdm
8
+
9
+
10
+ def process(item):
11
+ spkdir, wav_name, args = item
12
+ # speaker 's5', 'p280', 'p315' are excluded,
13
+ speaker = spkdir.replace("\\", "/").split("/")[-1]
14
+ wav_path = os.path.join(args.in_dir, speaker, wav_name)
15
+ if os.path.exists(wav_path) and '.wav' in wav_path:
16
+ os.makedirs(os.path.join(args.out_dir2, speaker), exist_ok=True)
17
+ wav, sr = librosa.load(wav_path, None)
18
+ wav, _ = librosa.effects.trim(wav, top_db=20)
19
+ peak = np.abs(wav).max()
20
+ if peak > 1.0:
21
+ wav = 0.98 * wav / peak
22
+ wav2 = librosa.resample(wav, orig_sr=sr, target_sr=args.sr2)
23
+ wav2 /= max(wav2.max(), -wav2.min())
24
+ save_name = wav_name
25
+ save_path2 = os.path.join(args.out_dir2, speaker, save_name)
26
+ wavfile.write(
27
+ save_path2,
28
+ args.sr2,
29
+ (wav2 * np.iinfo(np.int16).max).astype(np.int16)
30
+ )
31
+
32
+
33
+
34
+ if __name__ == "__main__":
35
+ parser = argparse.ArgumentParser()
36
+ parser.add_argument("--sr2", type=int, default=32000, help="sampling rate")
37
+ parser.add_argument("--in_dir", type=str, default="./dataset_raw", help="path to source dir")
38
+ parser.add_argument("--out_dir2", type=str, default="./dataset/32k", help="path to target dir")
39
+ args = parser.parse_args()
40
+ processs = cpu_count()-2 if cpu_count() >4 else 1
41
+ pool = Pool(processes=processs)
42
+
43
+ for speaker in os.listdir(args.in_dir):
44
+ spk_dir = os.path.join(args.in_dir, speaker)
45
+ if os.path.isdir(spk_dir):
46
+ print(spk_dir)
47
+ for _ in tqdm(pool.imap_unordered(process, [(spk_dir, i, args) for i in os.listdir(spk_dir) if i.endswith("wav")])):
48
+ pass
sovits_gradio.py ADDED
@@ -0,0 +1,47 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from inference.infer_tool_grad import VitsSvc
2
+ import gradio as gr
3
+ import os
4
+
5
+ class VitsGradio:
6
+ def __init__(self):
7
+ self.so = VitsSvc()
8
+ self.lspk = []
9
+ self.modelPaths = []
10
+ for root,dirs,files in os.walk("checkpoints"):
11
+ for dir in dirs:
12
+ self.modelPaths.append(dir)
13
+ with gr.Blocks() as self.Vits:
14
+ with gr.Tab("VoiceConversion"):
15
+ with gr.Row(visible=False) as self.VoiceConversion:
16
+ with gr.Column():
17
+ with gr.Row():
18
+ with gr.Column():
19
+ self.srcaudio = gr.Audio(label = "输入音频")
20
+ self.btnVC = gr.Button("说话人转换")
21
+ with gr.Column():
22
+ self.dsid = gr.Dropdown(label = "目标角色", choices = self.lspk)
23
+ self.tran = gr.Slider(label = "升降调", maximum = 60, minimum = -60, step = 1, value = 0)
24
+ self.th = gr.Slider(label = "切片阈值", maximum = 32767, minimum = -32768, step = 0.1, value = -40)
25
+ with gr.Row():
26
+ self.VCOutputs = gr.Audio()
27
+ self.btnVC.click(self.so.inference, inputs=[self.srcaudio,self.dsid,self.tran,self.th], outputs=[self.VCOutputs])
28
+ with gr.Tab("SelectModel"):
29
+ with gr.Column():
30
+ modelstrs = gr.Dropdown(label = "模型", choices = self.modelPaths, value = self.modelPaths[0], type = "value")
31
+ devicestrs = gr.Dropdown(label = "设备", choices = ["cpu","cuda"], value = "cpu", type = "value")
32
+ btnMod = gr.Button("载入模型")
33
+ btnMod.click(self.loadModel, inputs=[modelstrs,devicestrs], outputs = [self.dsid,self.VoiceConversion])
34
+
35
+ def loadModel(self, path, device):
36
+ self.lspk = []
37
+ self.so.set_device(device)
38
+ self.so.loadCheckpoint(path)
39
+ for spk, sid in self.so.hps.spk.items():
40
+ self.lspk.append(spk)
41
+ VChange = gr.update(visible = True)
42
+ SDChange = gr.update(choices = self.lspk, value = self.lspk[0])
43
+ return [SDChange,VChange]
44
+
45
+ grVits = VitsGradio()
46
+
47
+ grVits.Vits.launch()
spec_gen.py ADDED
@@ -0,0 +1,22 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from data_utils import TextAudioSpeakerLoader, EvalDataLoader
2
+ import json
3
+ from tqdm import tqdm
4
+
5
+ from utils import HParams
6
+
7
+ config_path = 'configs/config.json'
8
+ with open(config_path, "r") as f:
9
+ data = f.read()
10
+ config = json.loads(data)
11
+ hps = HParams(**config)
12
+
13
+ train_dataset = TextAudioSpeakerLoader("filelists/train.txt", hps)
14
+ test_dataset = TextAudioSpeakerLoader("filelists/test.txt", hps)
15
+ eval_dataset = TextAudioSpeakerLoader("filelists/val.txt", hps)
16
+
17
+ for _ in tqdm(train_dataset):
18
+ pass
19
+ for _ in tqdm(eval_dataset):
20
+ pass
21
+ for _ in tqdm(test_dataset):
22
+ pass
train.py ADDED
@@ -0,0 +1,281 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import logging
2
+ logging.getLogger('matplotlib').setLevel(logging.WARNING)
3
+ import os
4
+ import json
5
+ import argparse
6
+ import itertools
7
+ import math
8
+ import torch
9
+ from torch import nn, optim
10
+ from torch.nn import functional as F
11
+ from torch.utils.data import DataLoader
12
+ from torch.utils.tensorboard import SummaryWriter
13
+ import torch.multiprocessing as mp
14
+ import torch.distributed as dist
15
+ from torch.nn.parallel import DistributedDataParallel as DDP
16
+ from torch.cuda.amp import autocast, GradScaler
17
+
18
+ import commons
19
+ import utils
20
+ from data_utils import TextAudioSpeakerLoader, EvalDataLoader
21
+ from models import (
22
+ SynthesizerTrn,
23
+ MultiPeriodDiscriminator,
24
+ )
25
+ from losses import (
26
+ kl_loss,
27
+ generator_loss, discriminator_loss, feature_loss
28
+ )
29
+
30
+ from mel_processing import mel_spectrogram_torch, spec_to_mel_torch
31
+
32
+ torch.backends.cudnn.benchmark = True
33
+ global_step = 0
34
+
35
+
36
+ # os.environ['TORCH_DISTRIBUTED_DEBUG'] = 'INFO'
37
+
38
+
39
+ def main():
40
+ """Assume Single Node Multi GPUs Training Only"""
41
+ assert torch.cuda.is_available(), "CPU training is not allowed."
42
+ hps = utils.get_hparams()
43
+
44
+ n_gpus = torch.cuda.device_count()
45
+ os.environ['MASTER_ADDR'] = 'localhost'
46
+ os.environ['MASTER_PORT'] = hps.train.port
47
+
48
+ mp.spawn(run, nprocs=n_gpus, args=(n_gpus, hps,))
49
+
50
+
51
+ def run(rank, n_gpus, hps):
52
+ global global_step
53
+ if rank == 0:
54
+ logger = utils.get_logger(hps.model_dir)
55
+ logger.info(hps)
56
+ utils.check_git_hash(hps.model_dir)
57
+ writer = SummaryWriter(log_dir=hps.model_dir)
58
+ writer_eval = SummaryWriter(log_dir=os.path.join(hps.model_dir, "eval"))
59
+
60
+ dist.init_process_group(backend='nccl', init_method='env://', world_size=n_gpus, rank=rank)
61
+ torch.manual_seed(hps.train.seed)
62
+ torch.cuda.set_device(rank)
63
+
64
+ train_dataset = TextAudioSpeakerLoader(hps.data.training_files, hps)
65
+ train_loader = DataLoader(train_dataset, num_workers=8, shuffle=False, pin_memory=True,
66
+ batch_size=hps.train.batch_size)
67
+ if rank == 0:
68
+ eval_dataset = EvalDataLoader(hps.data.validation_files, hps)
69
+ eval_loader = DataLoader(eval_dataset, num_workers=1, shuffle=False,
70
+ batch_size=1, pin_memory=False,
71
+ drop_last=False)
72
+
73
+ net_g = SynthesizerTrn(
74
+ hps.data.filter_length // 2 + 1,
75
+ hps.train.segment_size // hps.data.hop_length,
76
+ **hps.model).cuda(rank)
77
+ net_d = MultiPeriodDiscriminator(hps.model.use_spectral_norm).cuda(rank)
78
+ optim_g = torch.optim.AdamW(
79
+ net_g.parameters(),
80
+ hps.train.learning_rate,
81
+ betas=hps.train.betas,
82
+ eps=hps.train.eps)
83
+ optim_d = torch.optim.AdamW(
84
+ net_d.parameters(),
85
+ hps.train.learning_rate,
86
+ betas=hps.train.betas,
87
+ eps=hps.train.eps)
88
+ net_g = DDP(net_g, device_ids=[rank]) # , find_unused_parameters=True)
89
+ net_d = DDP(net_d, device_ids=[rank])
90
+
91
+ try:
92
+ _, _, _, epoch_str = utils.load_checkpoint(utils.latest_checkpoint_path(hps.model_dir, "G_*.pth"), net_g,
93
+ optim_g)
94
+ _, _, _, epoch_str = utils.load_checkpoint(utils.latest_checkpoint_path(hps.model_dir, "D_*.pth"), net_d,
95
+ optim_d)
96
+ global_step = (epoch_str - 1) * len(train_loader)
97
+ except:
98
+ epoch_str = 1
99
+ global_step = 0
100
+
101
+ scheduler_g = torch.optim.lr_scheduler.ExponentialLR(optim_g, gamma=hps.train.lr_decay, last_epoch=epoch_str - 2)
102
+ scheduler_d = torch.optim.lr_scheduler.ExponentialLR(optim_d, gamma=hps.train.lr_decay, last_epoch=epoch_str - 2)
103
+
104
+ scaler = GradScaler(enabled=hps.train.fp16_run)
105
+
106
+ for epoch in range(epoch_str, hps.train.epochs + 1):
107
+ if rank == 0:
108
+ train_and_evaluate(rank, epoch, hps, [net_g, net_d], [optim_g, optim_d], [scheduler_g, scheduler_d], scaler,
109
+ [train_loader, eval_loader], logger, [writer, writer_eval])
110
+ else:
111
+ train_and_evaluate(rank, epoch, hps, [net_g, net_d], [optim_g, optim_d], [scheduler_g, scheduler_d], scaler,
112
+ [train_loader, None], None, None)
113
+ scheduler_g.step()
114
+ scheduler_d.step()
115
+
116
+
117
+ def train_and_evaluate(rank, epoch, hps, nets, optims, schedulers, scaler, loaders, logger, writers):
118
+ net_g, net_d = nets
119
+ optim_g, optim_d = optims
120
+ scheduler_g, scheduler_d = schedulers
121
+ train_loader, eval_loader = loaders
122
+ if writers is not None:
123
+ writer, writer_eval = writers
124
+
125
+ # train_loader.batch_sampler.set_epoch(epoch)
126
+ global global_step
127
+
128
+ net_g.train()
129
+ net_d.train()
130
+ for batch_idx, items in enumerate(train_loader):
131
+ c, f0, spec, y, spk = items
132
+ g = spk.cuda(rank, non_blocking=True)
133
+ spec, y = spec.cuda(rank, non_blocking=True), y.cuda(rank, non_blocking=True)
134
+ c = c.cuda(rank, non_blocking=True)
135
+ f0 = f0.cuda(rank, non_blocking=True)
136
+ mel = spec_to_mel_torch(
137
+ spec,
138
+ hps.data.filter_length,
139
+ hps.data.n_mel_channels,
140
+ hps.data.sampling_rate,
141
+ hps.data.mel_fmin,
142
+ hps.data.mel_fmax)
143
+
144
+ with autocast(enabled=hps.train.fp16_run):
145
+ y_hat, ids_slice, z_mask, \
146
+ (z, z_p, m_p, logs_p, m_q, logs_q) = net_g(c, f0, spec, g=g, mel=mel)
147
+
148
+ y_mel = commons.slice_segments(mel, ids_slice, hps.train.segment_size // hps.data.hop_length)
149
+ y_hat_mel = mel_spectrogram_torch(
150
+ y_hat.squeeze(1),
151
+ hps.data.filter_length,
152
+ hps.data.n_mel_channels,
153
+ hps.data.sampling_rate,
154
+ hps.data.hop_length,
155
+ hps.data.win_length,
156
+ hps.data.mel_fmin,
157
+ hps.data.mel_fmax
158
+ )
159
+ y = commons.slice_segments(y, ids_slice * hps.data.hop_length, hps.train.segment_size) # slice
160
+
161
+ # Discriminator
162
+ y_d_hat_r, y_d_hat_g, _, _ = net_d(y, y_hat.detach())
163
+
164
+ with autocast(enabled=False):
165
+ loss_disc, losses_disc_r, losses_disc_g = discriminator_loss(y_d_hat_r, y_d_hat_g)
166
+ loss_disc_all = loss_disc
167
+
168
+ optim_d.zero_grad()
169
+ scaler.scale(loss_disc_all).backward()
170
+ scaler.unscale_(optim_d)
171
+ grad_norm_d = commons.clip_grad_value_(net_d.parameters(), None)
172
+ scaler.step(optim_d)
173
+
174
+ with autocast(enabled=hps.train.fp16_run):
175
+ # Generator
176
+ y_d_hat_r, y_d_hat_g, fmap_r, fmap_g = net_d(y, y_hat)
177
+ with autocast(enabled=False):
178
+ loss_mel = F.l1_loss(y_mel, y_hat_mel) * hps.train.c_mel
179
+ loss_kl = kl_loss(z_p, logs_q, m_p, logs_p, z_mask) * hps.train.c_kl
180
+ loss_fm = feature_loss(fmap_r, fmap_g)
181
+ loss_gen, losses_gen = generator_loss(y_d_hat_g)
182
+ loss_gen_all = loss_gen + loss_fm + loss_mel + loss_kl
183
+ optim_g.zero_grad()
184
+ scaler.scale(loss_gen_all).backward()
185
+ scaler.unscale_(optim_g)
186
+ grad_norm_g = commons.clip_grad_value_(net_g.parameters(), None)
187
+ scaler.step(optim_g)
188
+ scaler.update()
189
+
190
+ if rank == 0:
191
+ if global_step % hps.train.log_interval == 0:
192
+ lr = optim_g.param_groups[0]['lr']
193
+ losses = [loss_disc, loss_gen, loss_fm, loss_mel, loss_kl]
194
+ logger.info('Train Epoch: {} [{:.0f}%]'.format(
195
+ epoch,
196
+ 100. * batch_idx / len(train_loader)))
197
+ logger.info([x.item() for x in losses] + [global_step, lr])
198
+
199
+ scalar_dict = {"loss/g/total": loss_gen_all, "loss/d/total": loss_disc_all, "learning_rate": lr,
200
+ "grad_norm_d": grad_norm_d, "grad_norm_g": grad_norm_g}
201
+ scalar_dict.update({"loss/g/fm": loss_fm, "loss/g/mel": loss_mel, "loss/g/kl": loss_kl})
202
+
203
+ scalar_dict.update({"loss/g/{}".format(i): v for i, v in enumerate(losses_gen)})
204
+ scalar_dict.update({"loss/d_r/{}".format(i): v for i, v in enumerate(losses_disc_r)})
205
+ scalar_dict.update({"loss/d_g/{}".format(i): v for i, v in enumerate(losses_disc_g)})
206
+ image_dict = {
207
+ "slice/mel_org": utils.plot_spectrogram_to_numpy(y_mel[0].data.cpu().numpy()),
208
+ "slice/mel_gen": utils.plot_spectrogram_to_numpy(y_hat_mel[0].data.cpu().numpy()),
209
+ "all/mel": utils.plot_spectrogram_to_numpy(mel[0].data.cpu().numpy()),
210
+ }
211
+
212
+ utils.summarize(
213
+ writer=writer,
214
+ global_step=global_step,
215
+ images=image_dict,
216
+ scalars=scalar_dict
217
+ )
218
+
219
+ if global_step % hps.train.eval_interval == 0:
220
+ evaluate(hps, net_g, eval_loader, writer_eval)
221
+ utils.save_checkpoint(net_g, optim_g, hps.train.learning_rate, epoch,
222
+ os.path.join(hps.model_dir, "G_{}.pth".format(global_step)))
223
+ utils.save_checkpoint(net_d, optim_d, hps.train.learning_rate, epoch,
224
+ os.path.join(hps.model_dir, "D_{}.pth".format(global_step)))
225
+ global_step += 1
226
+
227
+ if rank == 0:
228
+ logger.info('====> Epoch: {}'.format(epoch))
229
+
230
+
231
+ def evaluate(hps, generator, eval_loader, writer_eval):
232
+ generator.eval()
233
+ image_dict = {}
234
+ audio_dict = {}
235
+ with torch.no_grad():
236
+ for batch_idx, items in enumerate(eval_loader):
237
+ c, f0, spec, y, spk = items
238
+ g = spk[:1].cuda(0)
239
+ spec, y = spec[:1].cuda(0), y[:1].cuda(0)
240
+ c = c[:1].cuda(0)
241
+ f0 = f0[:1].cuda(0)
242
+ mel = spec_to_mel_torch(
243
+ spec,
244
+ hps.data.filter_length,
245
+ hps.data.n_mel_channels,
246
+ hps.data.sampling_rate,
247
+ hps.data.mel_fmin,
248
+ hps.data.mel_fmax)
249
+ y_hat = generator.module.infer(c, f0, g=g, mel=mel)
250
+
251
+ y_hat_mel = mel_spectrogram_torch(
252
+ y_hat.squeeze(1).float(),
253
+ hps.data.filter_length,
254
+ hps.data.n_mel_channels,
255
+ hps.data.sampling_rate,
256
+ hps.data.hop_length,
257
+ hps.data.win_length,
258
+ hps.data.mel_fmin,
259
+ hps.data.mel_fmax
260
+ )
261
+
262
+ audio_dict.update({
263
+ f"gen/audio_{batch_idx}": y_hat[0],
264
+ f"gt/audio_{batch_idx}": y[0]
265
+ })
266
+ image_dict.update({
267
+ f"gen/mel": utils.plot_spectrogram_to_numpy(y_hat_mel[0].cpu().numpy()),
268
+ "gt/mel": utils.plot_spectrogram_to_numpy(mel[0].cpu().numpy())
269
+ })
270
+ utils.summarize(
271
+ writer=writer_eval,
272
+ global_step=global_step,
273
+ images=image_dict,
274
+ audios=audio_dict,
275
+ audio_sampling_rate=hps.data.sampling_rate
276
+ )
277
+ generator.train()
278
+
279
+
280
+ if __name__ == "__main__":
281
+ main()
utils.py ADDED
@@ -0,0 +1,355 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import glob
3
+ import re
4
+ import sys
5
+ import argparse
6
+ import logging
7
+ import json
8
+ import subprocess
9
+
10
+ import librosa
11
+ import numpy as np
12
+ import torchaudio
13
+ from scipy.io.wavfile import read
14
+ import torch
15
+ import torchvision
16
+ from torch.nn import functional as F
17
+ from commons import sequence_mask
18
+ from hubert import hubert_model
19
+ MATPLOTLIB_FLAG = False
20
+
21
+ logging.basicConfig(stream=sys.stdout, level=logging.DEBUG)
22
+ logger = logging
23
+
24
+ f0_bin = 256
25
+ f0_max = 1100.0
26
+ f0_min = 50.0
27
+ f0_mel_min = 1127 * np.log(1 + f0_min / 700)
28
+ f0_mel_max = 1127 * np.log(1 + f0_max / 700)
29
+
30
+ def f0_to_coarse(f0):
31
+ is_torch = isinstance(f0, torch.Tensor)
32
+ f0_mel = 1127 * (1 + f0 / 700).log() if is_torch else 1127 * np.log(1 + f0 / 700)
33
+ f0_mel[f0_mel > 0] = (f0_mel[f0_mel > 0] - f0_mel_min) * (f0_bin - 2) / (f0_mel_max - f0_mel_min) + 1
34
+
35
+ f0_mel[f0_mel <= 1] = 1
36
+ f0_mel[f0_mel > f0_bin - 1] = f0_bin - 1
37
+ f0_coarse = (f0_mel + 0.5).long() if is_torch else np.rint(f0_mel).astype(np.int)
38
+ assert f0_coarse.max() <= 255 and f0_coarse.min() >= 1, (f0_coarse.max(), f0_coarse.min())
39
+ return f0_coarse
40
+
41
+
42
+ def get_hubert_model(rank=None):
43
+
44
+ hubert_soft = hubert_model.hubert_soft("hubert/hubert-soft-0d54a1f4.pt")
45
+ if rank is not None:
46
+ hubert_soft = hubert_soft.cuda(rank)
47
+ return hubert_soft
48
+
49
+ def get_hubert_content(hmodel, y=None, path=None):
50
+ if path is not None:
51
+ source, sr = torchaudio.load(path)
52
+ source = torchaudio.functional.resample(source, sr, 16000)
53
+ if len(source.shape) == 2 and source.shape[1] >= 2:
54
+ source = torch.mean(source, dim=0).unsqueeze(0)
55
+ else:
56
+ source = y
57
+ source = source.unsqueeze(0)
58
+ with torch.inference_mode():
59
+ units = hmodel.units(source)
60
+ return units.transpose(1,2)
61
+
62
+
63
+ def get_content(cmodel, y):
64
+ with torch.no_grad():
65
+ c = cmodel.extract_features(y.squeeze(1))[0]
66
+ c = c.transpose(1, 2)
67
+ return c
68
+
69
+
70
+
71
+ def transform(mel, height): # 68-92
72
+ #r = np.random.random()
73
+ #rate = r * 0.3 + 0.85 # 0.85-1.15
74
+ #height = int(mel.size(-2) * rate)
75
+ tgt = torchvision.transforms.functional.resize(mel, (height, mel.size(-1)))
76
+ if height >= mel.size(-2):
77
+ return tgt[:, :mel.size(-2), :]
78
+ else:
79
+ silence = tgt[:,-1:,:].repeat(1,mel.size(-2)-height,1)
80
+ silence += torch.randn_like(silence) / 10
81
+ return torch.cat((tgt, silence), 1)
82
+
83
+
84
+ def stretch(mel, width): # 0.5-2
85
+ return torchvision.transforms.functional.resize(mel, (mel.size(-2), width))
86
+
87
+
88
+ def load_checkpoint(checkpoint_path, model, optimizer=None):
89
+ assert os.path.isfile(checkpoint_path)
90
+ checkpoint_dict = torch.load(checkpoint_path, map_location='cpu')
91
+ iteration = checkpoint_dict['iteration']
92
+ learning_rate = checkpoint_dict['learning_rate']
93
+ if iteration is None:
94
+ iteration = 1
95
+ if learning_rate is None:
96
+ learning_rate = 0.0002
97
+ if optimizer is not None and checkpoint_dict['optimizer'] is not None:
98
+ optimizer.load_state_dict(checkpoint_dict['optimizer'])
99
+ saved_state_dict = checkpoint_dict['model']
100
+ if hasattr(model, 'module'):
101
+ state_dict = model.module.state_dict()
102
+ else:
103
+ state_dict = model.state_dict()
104
+ new_state_dict= {}
105
+ for k, v in state_dict.items():
106
+ try:
107
+ new_state_dict[k] = saved_state_dict[k]
108
+ except:
109
+ logger.info("%s is not in the checkpoint" % k)
110
+ new_state_dict[k] = v
111
+ if hasattr(model, 'module'):
112
+ model.module.load_state_dict(new_state_dict)
113
+ else:
114
+ model.load_state_dict(new_state_dict)
115
+ logger.info("Loaded checkpoint '{}' (iteration {})" .format(
116
+ checkpoint_path, iteration))
117
+ return model, optimizer, learning_rate, iteration
118
+
119
+
120
+ def save_checkpoint(model, optimizer, learning_rate, iteration, checkpoint_path):
121
+ logger.info("Saving model and optimizer state at iteration {} to {}".format(
122
+ iteration, checkpoint_path))
123
+ if hasattr(model, 'module'):
124
+ state_dict = model.module.state_dict()
125
+ else:
126
+ state_dict = model.state_dict()
127
+ torch.save({'model': state_dict,
128
+ 'iteration': iteration,
129
+ 'optimizer': optimizer.state_dict(),
130
+ 'learning_rate': learning_rate}, checkpoint_path)
131
+ clean_ckpt = False
132
+ if clean_ckpt:
133
+ clean_checkpoints(path_to_models='logs/32k/', n_ckpts_to_keep=3, sort_by_time=True)
134
+
135
+ def clean_checkpoints(path_to_models='logs/48k/', n_ckpts_to_keep=2, sort_by_time=True):
136
+ """Freeing up space by deleting saved ckpts
137
+
138
+ Arguments:
139
+ path_to_models -- Path to the model directory
140
+ n_ckpts_to_keep -- Number of ckpts to keep, excluding G_0.pth and D_0.pth
141
+ sort_by_time -- True -> chronologically delete ckpts
142
+ False -> lexicographically delete ckpts
143
+ """
144
+ ckpts_files = [f for f in os.listdir(path_to_models) if os.path.isfile(os.path.join(path_to_models, f))]
145
+ name_key = (lambda _f: int(re.compile('._(\d+)\.pth').match(_f).group(1)))
146
+ time_key = (lambda _f: os.path.getmtime(os.path.join(path_to_models, _f)))
147
+ sort_key = time_key if sort_by_time else name_key
148
+ x_sorted = lambda _x: sorted([f for f in ckpts_files if f.startswith(_x) and not f.endswith('_0.pth')], key=sort_key)
149
+ to_del = [os.path.join(path_to_models, fn) for fn in
150
+ (x_sorted('G')[:-n_ckpts_to_keep] + x_sorted('D')[:-n_ckpts_to_keep])]
151
+ del_info = lambda fn: logger.info(f".. Free up space by deleting ckpt {fn}")
152
+ del_routine = lambda x: [os.remove(x), del_info(x)]
153
+ rs = [del_routine(fn) for fn in to_del]
154
+
155
+ def summarize(writer, global_step, scalars={}, histograms={}, images={}, audios={}, audio_sampling_rate=22050):
156
+ for k, v in scalars.items():
157
+ writer.add_scalar(k, v, global_step)
158
+ for k, v in histograms.items():
159
+ writer.add_histogram(k, v, global_step)
160
+ for k, v in images.items():
161
+ writer.add_image(k, v, global_step, dataformats='HWC')
162
+ for k, v in audios.items():
163
+ writer.add_audio(k, v, global_step, audio_sampling_rate)
164
+
165
+
166
+ def latest_checkpoint_path(dir_path, regex="G_*.pth"):
167
+ f_list = glob.glob(os.path.join(dir_path, regex))
168
+ f_list.sort(key=lambda f: int("".join(filter(str.isdigit, f))))
169
+ x = f_list[-1]
170
+ print(x)
171
+ return x
172
+
173
+
174
+ def plot_spectrogram_to_numpy(spectrogram):
175
+ global MATPLOTLIB_FLAG
176
+ if not MATPLOTLIB_FLAG:
177
+ import matplotlib
178
+ matplotlib.use("Agg")
179
+ MATPLOTLIB_FLAG = True
180
+ mpl_logger = logging.getLogger('matplotlib')
181
+ mpl_logger.setLevel(logging.WARNING)
182
+ import matplotlib.pylab as plt
183
+ import numpy as np
184
+
185
+ fig, ax = plt.subplots(figsize=(10,2))
186
+ im = ax.imshow(spectrogram, aspect="auto", origin="lower",
187
+ interpolation='none')
188
+ plt.colorbar(im, ax=ax)
189
+ plt.xlabel("Frames")
190
+ plt.ylabel("Channels")
191
+ plt.tight_layout()
192
+
193
+ fig.canvas.draw()
194
+ data = np.fromstring(fig.canvas.tostring_rgb(), dtype=np.uint8, sep='')
195
+ data = data.reshape(fig.canvas.get_width_height()[::-1] + (3,))
196
+ plt.close()
197
+ return data
198
+
199
+
200
+ def plot_alignment_to_numpy(alignment, info=None):
201
+ global MATPLOTLIB_FLAG
202
+ if not MATPLOTLIB_FLAG:
203
+ import matplotlib
204
+ matplotlib.use("Agg")
205
+ MATPLOTLIB_FLAG = True
206
+ mpl_logger = logging.getLogger('matplotlib')
207
+ mpl_logger.setLevel(logging.WARNING)
208
+ import matplotlib.pylab as plt
209
+ import numpy as np
210
+
211
+ fig, ax = plt.subplots(figsize=(6, 4))
212
+ im = ax.imshow(alignment.transpose(), aspect='auto', origin='lower',
213
+ interpolation='none')
214
+ fig.colorbar(im, ax=ax)
215
+ xlabel = 'Decoder timestep'
216
+ if info is not None:
217
+ xlabel += '\n\n' + info
218
+ plt.xlabel(xlabel)
219
+ plt.ylabel('Encoder timestep')
220
+ plt.tight_layout()
221
+
222
+ fig.canvas.draw()
223
+ data = np.fromstring(fig.canvas.tostring_rgb(), dtype=np.uint8, sep='')
224
+ data = data.reshape(fig.canvas.get_width_height()[::-1] + (3,))
225
+ plt.close()
226
+ return data
227
+
228
+
229
+ def load_wav_to_torch(full_path):
230
+ sampling_rate, data = read(full_path)
231
+ return torch.FloatTensor(data.astype(np.float32)), sampling_rate
232
+
233
+
234
+ def load_filepaths_and_text(filename, split="|"):
235
+ with open(filename, encoding='utf-8') as f:
236
+ filepaths_and_text = [line.strip().split(split) for line in f]
237
+ return filepaths_and_text
238
+
239
+
240
+ def get_hparams(init=True):
241
+ parser = argparse.ArgumentParser()
242
+ parser.add_argument('-c', '--config', type=str, default="./configs/base.json",
243
+ help='JSON file for configuration')
244
+ parser.add_argument('-m', '--model', type=str, required=True,
245
+ help='Model name')
246
+
247
+ args = parser.parse_args()
248
+ model_dir = os.path.join("./logs", args.model)
249
+
250
+ if not os.path.exists(model_dir):
251
+ os.makedirs(model_dir)
252
+
253
+ config_path = args.config
254
+ config_save_path = os.path.join(model_dir, "config.json")
255
+ if init:
256
+ with open(config_path, "r") as f:
257
+ data = f.read()
258
+ with open(config_save_path, "w") as f:
259
+ f.write(data)
260
+ else:
261
+ with open(config_save_path, "r") as f:
262
+ data = f.read()
263
+ config = json.loads(data)
264
+
265
+ hparams = HParams(**config)
266
+ hparams.model_dir = model_dir
267
+ return hparams
268
+
269
+
270
+ def get_hparams_from_dir(model_dir):
271
+ config_save_path = os.path.join(model_dir, "config.json")
272
+ with open(config_save_path, "r") as f:
273
+ data = f.read()
274
+ config = json.loads(data)
275
+
276
+ hparams =HParams(**config)
277
+ hparams.model_dir = model_dir
278
+ return hparams
279
+
280
+
281
+ def get_hparams_from_file(config_path):
282
+ with open(config_path, "r") as f:
283
+ data = f.read()
284
+ config = json.loads(data)
285
+
286
+ hparams =HParams(**config)
287
+ return hparams
288
+
289
+
290
+ def check_git_hash(model_dir):
291
+ source_dir = os.path.dirname(os.path.realpath(__file__))
292
+ if not os.path.exists(os.path.join(source_dir, ".git")):
293
+ logger.warn("{} is not a git repository, therefore hash value comparison will be ignored.".format(
294
+ source_dir
295
+ ))
296
+ return
297
+
298
+ cur_hash = subprocess.getoutput("git rev-parse HEAD")
299
+
300
+ path = os.path.join(model_dir, "githash")
301
+ if os.path.exists(path):
302
+ saved_hash = open(path).read()
303
+ if saved_hash != cur_hash:
304
+ logger.warn("git hash values are different. {}(saved) != {}(current)".format(
305
+ saved_hash[:8], cur_hash[:8]))
306
+ else:
307
+ open(path, "w").write(cur_hash)
308
+
309
+
310
+ def get_logger(model_dir, filename="train.log"):
311
+ global logger
312
+ logger = logging.getLogger(os.path.basename(model_dir))
313
+ logger.setLevel(logging.DEBUG)
314
+
315
+ formatter = logging.Formatter("%(asctime)s\t%(name)s\t%(levelname)s\t%(message)s")
316
+ if not os.path.exists(model_dir):
317
+ os.makedirs(model_dir)
318
+ h = logging.FileHandler(os.path.join(model_dir, filename))
319
+ h.setLevel(logging.DEBUG)
320
+ h.setFormatter(formatter)
321
+ logger.addHandler(h)
322
+ return logger
323
+
324
+
325
+ class HParams():
326
+ def __init__(self, **kwargs):
327
+ for k, v in kwargs.items():
328
+ if type(v) == dict:
329
+ v = HParams(**v)
330
+ self[k] = v
331
+
332
+ def keys(self):
333
+ return self.__dict__.keys()
334
+
335
+ def items(self):
336
+ return self.__dict__.items()
337
+
338
+ def values(self):
339
+ return self.__dict__.values()
340
+
341
+ def __len__(self):
342
+ return len(self.__dict__)
343
+
344
+ def __getitem__(self, key):
345
+ return getattr(self, key)
346
+
347
+ def __setitem__(self, key, value):
348
+ return setattr(self, key, value)
349
+
350
+ def __contains__(self, key):
351
+ return key in self.__dict__
352
+
353
+ def __repr__(self):
354
+ return self.__dict__.__repr__()
355
+
vdecoder/__init__.py ADDED
File without changes
vdecoder/hifigan/env.py ADDED
@@ -0,0 +1,15 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import shutil
3
+
4
+
5
+ class AttrDict(dict):
6
+ def __init__(self, *args, **kwargs):
7
+ super(AttrDict, self).__init__(*args, **kwargs)
8
+ self.__dict__ = self
9
+
10
+
11
+ def build_env(config, config_name, path):
12
+ t_path = os.path.join(path, config_name)
13
+ if config != t_path:
14
+ os.makedirs(path, exist_ok=True)
15
+ shutil.copyfile(config, os.path.join(path, config_name))
vdecoder/hifigan/models.py ADDED
@@ -0,0 +1,503 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import json
3
+ from .env import AttrDict
4
+ import numpy as np
5
+ import torch
6
+ import torch.nn.functional as F
7
+ import torch.nn as nn
8
+ from torch.nn import Conv1d, ConvTranspose1d, AvgPool1d, Conv2d
9
+ from torch.nn.utils import weight_norm, remove_weight_norm, spectral_norm
10
+ from .utils import init_weights, get_padding
11
+
12
+ LRELU_SLOPE = 0.1
13
+
14
+
15
+ def load_model(model_path, device='cuda'):
16
+ config_file = os.path.join(os.path.split(model_path)[0], 'config.json')
17
+ with open(config_file) as f:
18
+ data = f.read()
19
+
20
+ global h
21
+ json_config = json.loads(data)
22
+ h = AttrDict(json_config)
23
+
24
+ generator = Generator(h).to(device)
25
+
26
+ cp_dict = torch.load(model_path)
27
+ generator.load_state_dict(cp_dict['generator'])
28
+ generator.eval()
29
+ generator.remove_weight_norm()
30
+ del cp_dict
31
+ return generator, h
32
+
33
+
34
+ class ResBlock1(torch.nn.Module):
35
+ def __init__(self, h, channels, kernel_size=3, dilation=(1, 3, 5)):
36
+ super(ResBlock1, self).__init__()
37
+ self.h = h
38
+ self.convs1 = nn.ModuleList([
39
+ weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[0],
40
+ padding=get_padding(kernel_size, dilation[0]))),
41
+ weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[1],
42
+ padding=get_padding(kernel_size, dilation[1]))),
43
+ weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[2],
44
+ padding=get_padding(kernel_size, dilation[2])))
45
+ ])
46
+ self.convs1.apply(init_weights)
47
+
48
+ self.convs2 = nn.ModuleList([
49
+ weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
50
+ padding=get_padding(kernel_size, 1))),
51
+ weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
52
+ padding=get_padding(kernel_size, 1))),
53
+ weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
54
+ padding=get_padding(kernel_size, 1)))
55
+ ])
56
+ self.convs2.apply(init_weights)
57
+
58
+ def forward(self, x):
59
+ for c1, c2 in zip(self.convs1, self.convs2):
60
+ xt = F.leaky_relu(x, LRELU_SLOPE)
61
+ xt = c1(xt)
62
+ xt = F.leaky_relu(xt, LRELU_SLOPE)
63
+ xt = c2(xt)
64
+ x = xt + x
65
+ return x
66
+
67
+ def remove_weight_norm(self):
68
+ for l in self.convs1:
69
+ remove_weight_norm(l)
70
+ for l in self.convs2:
71
+ remove_weight_norm(l)
72
+
73
+
74
+ class ResBlock2(torch.nn.Module):
75
+ def __init__(self, h, channels, kernel_size=3, dilation=(1, 3)):
76
+ super(ResBlock2, self).__init__()
77
+ self.h = h
78
+ self.convs = nn.ModuleList([
79
+ weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[0],
80
+ padding=get_padding(kernel_size, dilation[0]))),
81
+ weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[1],
82
+ padding=get_padding(kernel_size, dilation[1])))
83
+ ])
84
+ self.convs.apply(init_weights)
85
+
86
+ def forward(self, x):
87
+ for c in self.convs:
88
+ xt = F.leaky_relu(x, LRELU_SLOPE)
89
+ xt = c(xt)
90
+ x = xt + x
91
+ return x
92
+
93
+ def remove_weight_norm(self):
94
+ for l in self.convs:
95
+ remove_weight_norm(l)
96
+
97
+
98
+ def padDiff(x):
99
+ return F.pad(F.pad(x, (0,0,-1,1), 'constant', 0) - x, (0,0,0,-1), 'constant', 0)
100
+
101
+ class SineGen(torch.nn.Module):
102
+ """ Definition of sine generator
103
+ SineGen(samp_rate, harmonic_num = 0,
104
+ sine_amp = 0.1, noise_std = 0.003,
105
+ voiced_threshold = 0,
106
+ flag_for_pulse=False)
107
+ samp_rate: sampling rate in Hz
108
+ harmonic_num: number of harmonic overtones (default 0)
109
+ sine_amp: amplitude of sine-wavefrom (default 0.1)
110
+ noise_std: std of Gaussian noise (default 0.003)
111
+ voiced_thoreshold: F0 threshold for U/V classification (default 0)
112
+ flag_for_pulse: this SinGen is used inside PulseGen (default False)
113
+ Note: when flag_for_pulse is True, the first time step of a voiced
114
+ segment is always sin(np.pi) or cos(0)
115
+ """
116
+
117
+ def __init__(self, samp_rate, harmonic_num=0,
118
+ sine_amp=0.1, noise_std=0.003,
119
+ voiced_threshold=0,
120
+ flag_for_pulse=False):
121
+ super(SineGen, self).__init__()
122
+ self.sine_amp = sine_amp
123
+ self.noise_std = noise_std
124
+ self.harmonic_num = harmonic_num
125
+ self.dim = self.harmonic_num + 1
126
+ self.sampling_rate = samp_rate
127
+ self.voiced_threshold = voiced_threshold
128
+ self.flag_for_pulse = flag_for_pulse
129
+
130
+ def _f02uv(self, f0):
131
+ # generate uv signal
132
+ uv = (f0 > self.voiced_threshold).type(torch.float32)
133
+ return uv
134
+
135
+ def _f02sine(self, f0_values):
136
+ """ f0_values: (batchsize, length, dim)
137
+ where dim indicates fundamental tone and overtones
138
+ """
139
+ # convert to F0 in rad. The interger part n can be ignored
140
+ # because 2 * np.pi * n doesn't affect phase
141
+ rad_values = (f0_values / self.sampling_rate) % 1
142
+
143
+ # initial phase noise (no noise for fundamental component)
144
+ rand_ini = torch.rand(f0_values.shape[0], f0_values.shape[2], \
145
+ device=f0_values.device)
146
+ rand_ini[:, 0] = 0
147
+ rad_values[:, 0, :] = rad_values[:, 0, :] + rand_ini
148
+
149
+ # instantanouse phase sine[t] = sin(2*pi \sum_i=1 ^{t} rad)
150
+ if not self.flag_for_pulse:
151
+ # for normal case
152
+
153
+ # To prevent torch.cumsum numerical overflow,
154
+ # it is necessary to add -1 whenever \sum_k=1^n rad_value_k > 1.
155
+ # Buffer tmp_over_one_idx indicates the time step to add -1.
156
+ # This will not change F0 of sine because (x-1) * 2*pi = x * 2*pi
157
+ tmp_over_one = torch.cumsum(rad_values, 1) % 1
158
+ tmp_over_one_idx = (padDiff(tmp_over_one)) < 0
159
+ cumsum_shift = torch.zeros_like(rad_values)
160
+ cumsum_shift[:, 1:, :] = tmp_over_one_idx * -1.0
161
+
162
+ sines = torch.sin(torch.cumsum(rad_values + cumsum_shift, dim=1)
163
+ * 2 * np.pi)
164
+ else:
165
+ # If necessary, make sure that the first time step of every
166
+ # voiced segments is sin(pi) or cos(0)
167
+ # This is used for pulse-train generation
168
+
169
+ # identify the last time step in unvoiced segments
170
+ uv = self._f02uv(f0_values)
171
+ uv_1 = torch.roll(uv, shifts=-1, dims=1)
172
+ uv_1[:, -1, :] = 1
173
+ u_loc = (uv < 1) * (uv_1 > 0)
174
+
175
+ # get the instantanouse phase
176
+ tmp_cumsum = torch.cumsum(rad_values, dim=1)
177
+ # different batch needs to be processed differently
178
+ for idx in range(f0_values.shape[0]):
179
+ temp_sum = tmp_cumsum[idx, u_loc[idx, :, 0], :]
180
+ temp_sum[1:, :] = temp_sum[1:, :] - temp_sum[0:-1, :]
181
+ # stores the accumulation of i.phase within
182
+ # each voiced segments
183
+ tmp_cumsum[idx, :, :] = 0
184
+ tmp_cumsum[idx, u_loc[idx, :, 0], :] = temp_sum
185
+
186
+ # rad_values - tmp_cumsum: remove the accumulation of i.phase
187
+ # within the previous voiced segment.
188
+ i_phase = torch.cumsum(rad_values - tmp_cumsum, dim=1)
189
+
190
+ # get the sines
191
+ sines = torch.cos(i_phase * 2 * np.pi)
192
+ return sines
193
+
194
+ def forward(self, f0):
195
+ """ sine_tensor, uv = forward(f0)
196
+ input F0: tensor(batchsize=1, length, dim=1)
197
+ f0 for unvoiced steps should be 0
198
+ output sine_tensor: tensor(batchsize=1, length, dim)
199
+ output uv: tensor(batchsize=1, length, 1)
200
+ """
201
+ with torch.no_grad():
202
+ f0_buf = torch.zeros(f0.shape[0], f0.shape[1], self.dim,
203
+ device=f0.device)
204
+ # fundamental component
205
+ fn = torch.multiply(f0, torch.FloatTensor([[range(1, self.harmonic_num + 2)]]).to(f0.device))
206
+
207
+ # generate sine waveforms
208
+ sine_waves = self._f02sine(fn) * self.sine_amp
209
+
210
+ # generate uv signal
211
+ # uv = torch.ones(f0.shape)
212
+ # uv = uv * (f0 > self.voiced_threshold)
213
+ uv = self._f02uv(f0)
214
+
215
+ # noise: for unvoiced should be similar to sine_amp
216
+ # std = self.sine_amp/3 -> max value ~ self.sine_amp
217
+ # . for voiced regions is self.noise_std
218
+ noise_amp = uv * self.noise_std + (1 - uv) * self.sine_amp / 3
219
+ noise = noise_amp * torch.randn_like(sine_waves)
220
+
221
+ # first: set the unvoiced part to 0 by uv
222
+ # then: additive noise
223
+ sine_waves = sine_waves * uv + noise
224
+ return sine_waves, uv, noise
225
+
226
+
227
+ class SourceModuleHnNSF(torch.nn.Module):
228
+ """ SourceModule for hn-nsf
229
+ SourceModule(sampling_rate, harmonic_num=0, sine_amp=0.1,
230
+ add_noise_std=0.003, voiced_threshod=0)
231
+ sampling_rate: sampling_rate in Hz
232
+ harmonic_num: number of harmonic above F0 (default: 0)
233
+ sine_amp: amplitude of sine source signal (default: 0.1)
234
+ add_noise_std: std of additive Gaussian noise (default: 0.003)
235
+ note that amplitude of noise in unvoiced is decided
236
+ by sine_amp
237
+ voiced_threshold: threhold to set U/V given F0 (default: 0)
238
+ Sine_source, noise_source = SourceModuleHnNSF(F0_sampled)
239
+ F0_sampled (batchsize, length, 1)
240
+ Sine_source (batchsize, length, 1)
241
+ noise_source (batchsize, length 1)
242
+ uv (batchsize, length, 1)
243
+ """
244
+
245
+ def __init__(self, sampling_rate, harmonic_num=0, sine_amp=0.1,
246
+ add_noise_std=0.003, voiced_threshod=0):
247
+ super(SourceModuleHnNSF, self).__init__()
248
+
249
+ self.sine_amp = sine_amp
250
+ self.noise_std = add_noise_std
251
+
252
+ # to produce sine waveforms
253
+ self.l_sin_gen = SineGen(sampling_rate, harmonic_num,
254
+ sine_amp, add_noise_std, voiced_threshod)
255
+
256
+ # to merge source harmonics into a single excitation
257
+ self.l_linear = torch.nn.Linear(harmonic_num + 1, 1)
258
+ self.l_tanh = torch.nn.Tanh()
259
+
260
+ def forward(self, x):
261
+ """
262
+ Sine_source, noise_source = SourceModuleHnNSF(F0_sampled)
263
+ F0_sampled (batchsize, length, 1)
264
+ Sine_source (batchsize, length, 1)
265
+ noise_source (batchsize, length 1)
266
+ """
267
+ # source for harmonic branch
268
+ sine_wavs, uv, _ = self.l_sin_gen(x)
269
+ sine_merge = self.l_tanh(self.l_linear(sine_wavs))
270
+
271
+ # source for noise branch, in the same shape as uv
272
+ noise = torch.randn_like(uv) * self.sine_amp / 3
273
+ return sine_merge, noise, uv
274
+
275
+
276
+ class Generator(torch.nn.Module):
277
+ def __init__(self, h):
278
+ super(Generator, self).__init__()
279
+ self.h = h
280
+
281
+ self.num_kernels = len(h["resblock_kernel_sizes"])
282
+ self.num_upsamples = len(h["upsample_rates"])
283
+ self.f0_upsamp = torch.nn.Upsample(scale_factor=np.prod(h["upsample_rates"]))
284
+ self.m_source = SourceModuleHnNSF(
285
+ sampling_rate=h["sampling_rate"],
286
+ harmonic_num=8)
287
+ self.noise_convs = nn.ModuleList()
288
+ self.conv_pre = weight_norm(Conv1d(h["inter_channels"], h["upsample_initial_channel"], 7, 1, padding=3))
289
+ resblock = ResBlock1 if h["resblock"] == '1' else ResBlock2
290
+ self.ups = nn.ModuleList()
291
+ for i, (u, k) in enumerate(zip(h["upsample_rates"], h["upsample_kernel_sizes"])):
292
+ c_cur = h["upsample_initial_channel"] // (2 ** (i + 1))
293
+ self.ups.append(weight_norm(
294
+ ConvTranspose1d(h["upsample_initial_channel"] // (2 ** i), h["upsample_initial_channel"] // (2 ** (i + 1)),
295
+ k, u, padding=(k - u) // 2)))
296
+ if i + 1 < len(h["upsample_rates"]): #
297
+ stride_f0 = np.prod(h["upsample_rates"][i + 1:])
298
+ self.noise_convs.append(Conv1d(
299
+ 1, c_cur, kernel_size=stride_f0 * 2, stride=stride_f0, padding=stride_f0 // 2))
300
+ else:
301
+ self.noise_convs.append(Conv1d(1, c_cur, kernel_size=1))
302
+ self.resblocks = nn.ModuleList()
303
+ for i in range(len(self.ups)):
304
+ ch = h["upsample_initial_channel"] // (2 ** (i + 1))
305
+ for j, (k, d) in enumerate(zip(h["resblock_kernel_sizes"], h["resblock_dilation_sizes"])):
306
+ self.resblocks.append(resblock(h, ch, k, d))
307
+
308
+ self.conv_post = weight_norm(Conv1d(ch, 1, 7, 1, padding=3))
309
+ self.ups.apply(init_weights)
310
+ self.conv_post.apply(init_weights)
311
+ self.cond = nn.Conv1d(h['gin_channels'], h['upsample_initial_channel'], 1)
312
+
313
+ def forward(self, x, f0, g=None):
314
+ # print(1,x.shape,f0.shape,f0[:, None].shape)
315
+ f0 = self.f0_upsamp(f0[:, None]).transpose(1, 2) # bs,n,t
316
+ # print(2,f0.shape)
317
+ har_source, noi_source, uv = self.m_source(f0)
318
+ har_source = har_source.transpose(1, 2)
319
+ x = self.conv_pre(x)
320
+ x = x + self.cond(g)
321
+ # print(124,x.shape,har_source.shape)
322
+ for i in range(self.num_upsamples):
323
+ x = F.leaky_relu(x, LRELU_SLOPE)
324
+ # print(3,x.shape)
325
+ x = self.ups[i](x)
326
+ x_source = self.noise_convs[i](har_source)
327
+ # print(4,x_source.shape,har_source.shape,x.shape)
328
+ x = x + x_source
329
+ xs = None
330
+ for j in range(self.num_kernels):
331
+ if xs is None:
332
+ xs = self.resblocks[i * self.num_kernels + j](x)
333
+ else:
334
+ xs += self.resblocks[i * self.num_kernels + j](x)
335
+ x = xs / self.num_kernels
336
+ x = F.leaky_relu(x)
337
+ x = self.conv_post(x)
338
+ x = torch.tanh(x)
339
+
340
+ return x
341
+
342
+ def remove_weight_norm(self):
343
+ print('Removing weight norm...')
344
+ for l in self.ups:
345
+ remove_weight_norm(l)
346
+ for l in self.resblocks:
347
+ l.remove_weight_norm()
348
+ remove_weight_norm(self.conv_pre)
349
+ remove_weight_norm(self.conv_post)
350
+
351
+
352
+ class DiscriminatorP(torch.nn.Module):
353
+ def __init__(self, period, kernel_size=5, stride=3, use_spectral_norm=False):
354
+ super(DiscriminatorP, self).__init__()
355
+ self.period = period
356
+ norm_f = weight_norm if use_spectral_norm == False else spectral_norm
357
+ self.convs = nn.ModuleList([
358
+ norm_f(Conv2d(1, 32, (kernel_size, 1), (stride, 1), padding=(get_padding(5, 1), 0))),
359
+ norm_f(Conv2d(32, 128, (kernel_size, 1), (stride, 1), padding=(get_padding(5, 1), 0))),
360
+ norm_f(Conv2d(128, 512, (kernel_size, 1), (stride, 1), padding=(get_padding(5, 1), 0))),
361
+ norm_f(Conv2d(512, 1024, (kernel_size, 1), (stride, 1), padding=(get_padding(5, 1), 0))),
362
+ norm_f(Conv2d(1024, 1024, (kernel_size, 1), 1, padding=(2, 0))),
363
+ ])
364
+ self.conv_post = norm_f(Conv2d(1024, 1, (3, 1), 1, padding=(1, 0)))
365
+
366
+ def forward(self, x):
367
+ fmap = []
368
+
369
+ # 1d to 2d
370
+ b, c, t = x.shape
371
+ if t % self.period != 0: # pad first
372
+ n_pad = self.period - (t % self.period)
373
+ x = F.pad(x, (0, n_pad), "reflect")
374
+ t = t + n_pad
375
+ x = x.view(b, c, t // self.period, self.period)
376
+
377
+ for l in self.convs:
378
+ x = l(x)
379
+ x = F.leaky_relu(x, LRELU_SLOPE)
380
+ fmap.append(x)
381
+ x = self.conv_post(x)
382
+ fmap.append(x)
383
+ x = torch.flatten(x, 1, -1)
384
+
385
+ return x, fmap
386
+
387
+
388
+ class MultiPeriodDiscriminator(torch.nn.Module):
389
+ def __init__(self, periods=None):
390
+ super(MultiPeriodDiscriminator, self).__init__()
391
+ self.periods = periods if periods is not None else [2, 3, 5, 7, 11]
392
+ self.discriminators = nn.ModuleList()
393
+ for period in self.periods:
394
+ self.discriminators.append(DiscriminatorP(period))
395
+
396
+ def forward(self, y, y_hat):
397
+ y_d_rs = []
398
+ y_d_gs = []
399
+ fmap_rs = []
400
+ fmap_gs = []
401
+ for i, d in enumerate(self.discriminators):
402
+ y_d_r, fmap_r = d(y)
403
+ y_d_g, fmap_g = d(y_hat)
404
+ y_d_rs.append(y_d_r)
405
+ fmap_rs.append(fmap_r)
406
+ y_d_gs.append(y_d_g)
407
+ fmap_gs.append(fmap_g)
408
+
409
+ return y_d_rs, y_d_gs, fmap_rs, fmap_gs
410
+
411
+
412
+ class DiscriminatorS(torch.nn.Module):
413
+ def __init__(self, use_spectral_norm=False):
414
+ super(DiscriminatorS, self).__init__()
415
+ norm_f = weight_norm if use_spectral_norm == False else spectral_norm
416
+ self.convs = nn.ModuleList([
417
+ norm_f(Conv1d(1, 128, 15, 1, padding=7)),
418
+ norm_f(Conv1d(128, 128, 41, 2, groups=4, padding=20)),
419
+ norm_f(Conv1d(128, 256, 41, 2, groups=16, padding=20)),
420
+ norm_f(Conv1d(256, 512, 41, 4, groups=16, padding=20)),
421
+ norm_f(Conv1d(512, 1024, 41, 4, groups=16, padding=20)),
422
+ norm_f(Conv1d(1024, 1024, 41, 1, groups=16, padding=20)),
423
+ norm_f(Conv1d(1024, 1024, 5, 1, padding=2)),
424
+ ])
425
+ self.conv_post = norm_f(Conv1d(1024, 1, 3, 1, padding=1))
426
+
427
+ def forward(self, x):
428
+ fmap = []
429
+ for l in self.convs:
430
+ x = l(x)
431
+ x = F.leaky_relu(x, LRELU_SLOPE)
432
+ fmap.append(x)
433
+ x = self.conv_post(x)
434
+ fmap.append(x)
435
+ x = torch.flatten(x, 1, -1)
436
+
437
+ return x, fmap
438
+
439
+
440
+ class MultiScaleDiscriminator(torch.nn.Module):
441
+ def __init__(self):
442
+ super(MultiScaleDiscriminator, self).__init__()
443
+ self.discriminators = nn.ModuleList([
444
+ DiscriminatorS(use_spectral_norm=True),
445
+ DiscriminatorS(),
446
+ DiscriminatorS(),
447
+ ])
448
+ self.meanpools = nn.ModuleList([
449
+ AvgPool1d(4, 2, padding=2),
450
+ AvgPool1d(4, 2, padding=2)
451
+ ])
452
+
453
+ def forward(self, y, y_hat):
454
+ y_d_rs = []
455
+ y_d_gs = []
456
+ fmap_rs = []
457
+ fmap_gs = []
458
+ for i, d in enumerate(self.discriminators):
459
+ if i != 0:
460
+ y = self.meanpools[i - 1](y)
461
+ y_hat = self.meanpools[i - 1](y_hat)
462
+ y_d_r, fmap_r = d(y)
463
+ y_d_g, fmap_g = d(y_hat)
464
+ y_d_rs.append(y_d_r)
465
+ fmap_rs.append(fmap_r)
466
+ y_d_gs.append(y_d_g)
467
+ fmap_gs.append(fmap_g)
468
+
469
+ return y_d_rs, y_d_gs, fmap_rs, fmap_gs
470
+
471
+
472
+ def feature_loss(fmap_r, fmap_g):
473
+ loss = 0
474
+ for dr, dg in zip(fmap_r, fmap_g):
475
+ for rl, gl in zip(dr, dg):
476
+ loss += torch.mean(torch.abs(rl - gl))
477
+
478
+ return loss * 2
479
+
480
+
481
+ def discriminator_loss(disc_real_outputs, disc_generated_outputs):
482
+ loss = 0
483
+ r_losses = []
484
+ g_losses = []
485
+ for dr, dg in zip(disc_real_outputs, disc_generated_outputs):
486
+ r_loss = torch.mean((1 - dr) ** 2)
487
+ g_loss = torch.mean(dg ** 2)
488
+ loss += (r_loss + g_loss)
489
+ r_losses.append(r_loss.item())
490
+ g_losses.append(g_loss.item())
491
+
492
+ return loss, r_losses, g_losses
493
+
494
+
495
+ def generator_loss(disc_outputs):
496
+ loss = 0
497
+ gen_losses = []
498
+ for dg in disc_outputs:
499
+ l = torch.mean((1 - dg) ** 2)
500
+ gen_losses.append(l)
501
+ loss += l
502
+
503
+ return loss, gen_losses
vdecoder/hifigan/nvSTFT.py ADDED
@@ -0,0 +1,111 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import math
2
+ import os
3
+ os.environ["LRU_CACHE_CAPACITY"] = "3"
4
+ import random
5
+ import torch
6
+ import torch.utils.data
7
+ import numpy as np
8
+ import librosa
9
+ from librosa.util import normalize
10
+ from librosa.filters import mel as librosa_mel_fn
11
+ from scipy.io.wavfile import read
12
+ import soundfile as sf
13
+
14
+ def load_wav_to_torch(full_path, target_sr=None, return_empty_on_exception=False):
15
+ sampling_rate = None
16
+ try:
17
+ data, sampling_rate = sf.read(full_path, always_2d=True)# than soundfile.
18
+ except Exception as ex:
19
+ print(f"'{full_path}' failed to load.\nException:")
20
+ print(ex)
21
+ if return_empty_on_exception:
22
+ return [], sampling_rate or target_sr or 32000
23
+ else:
24
+ raise Exception(ex)
25
+
26
+ if len(data.shape) > 1:
27
+ data = data[:, 0]
28
+ assert len(data) > 2# check duration of audio file is > 2 samples (because otherwise the slice operation was on the wrong dimension)
29
+
30
+ if np.issubdtype(data.dtype, np.integer): # if audio data is type int
31
+ max_mag = -np.iinfo(data.dtype).min # maximum magnitude = min possible value of intXX
32
+ else: # if audio data is type fp32
33
+ max_mag = max(np.amax(data), -np.amin(data))
34
+ max_mag = (2**31)+1 if max_mag > (2**15) else ((2**15)+1 if max_mag > 1.01 else 1.0) # data should be either 16-bit INT, 32-bit INT or [-1 to 1] float32
35
+
36
+ data = torch.FloatTensor(data.astype(np.float32))/max_mag
37
+
38
+ if (torch.isinf(data) | torch.isnan(data)).any() and return_empty_on_exception:# resample will crash with inf/NaN inputs. return_empty_on_exception will return empty arr instead of except
39
+ return [], sampling_rate or target_sr or 32000
40
+ if target_sr is not None and sampling_rate != target_sr:
41
+ data = torch.from_numpy(librosa.core.resample(data.numpy(), orig_sr=sampling_rate, target_sr=target_sr))
42
+ sampling_rate = target_sr
43
+
44
+ return data, sampling_rate
45
+
46
+ def dynamic_range_compression(x, C=1, clip_val=1e-5):
47
+ return np.log(np.clip(x, a_min=clip_val, a_max=None) * C)
48
+
49
+ def dynamic_range_decompression(x, C=1):
50
+ return np.exp(x) / C
51
+
52
+ def dynamic_range_compression_torch(x, C=1, clip_val=1e-5):
53
+ return torch.log(torch.clamp(x, min=clip_val) * C)
54
+
55
+ def dynamic_range_decompression_torch(x, C=1):
56
+ return torch.exp(x) / C
57
+
58
+ class STFT():
59
+ def __init__(self, sr=22050, n_mels=80, n_fft=1024, win_size=1024, hop_length=256, fmin=20, fmax=11025, clip_val=1e-5):
60
+ self.target_sr = sr
61
+
62
+ self.n_mels = n_mels
63
+ self.n_fft = n_fft
64
+ self.win_size = win_size
65
+ self.hop_length = hop_length
66
+ self.fmin = fmin
67
+ self.fmax = fmax
68
+ self.clip_val = clip_val
69
+ self.mel_basis = {}
70
+ self.hann_window = {}
71
+
72
+ def get_mel(self, y, center=False):
73
+ sampling_rate = self.target_sr
74
+ n_mels = self.n_mels
75
+ n_fft = self.n_fft
76
+ win_size = self.win_size
77
+ hop_length = self.hop_length
78
+ fmin = self.fmin
79
+ fmax = self.fmax
80
+ clip_val = self.clip_val
81
+
82
+ if torch.min(y) < -1.:
83
+ print('min value is ', torch.min(y))
84
+ if torch.max(y) > 1.:
85
+ print('max value is ', torch.max(y))
86
+
87
+ if fmax not in self.mel_basis:
88
+ mel = librosa_mel_fn(sr=sampling_rate, n_fft=n_fft, n_mels=n_mels, fmin=fmin, fmax=fmax)
89
+ self.mel_basis[str(fmax)+'_'+str(y.device)] = torch.from_numpy(mel).float().to(y.device)
90
+ self.hann_window[str(y.device)] = torch.hann_window(self.win_size).to(y.device)
91
+
92
+ y = torch.nn.functional.pad(y.unsqueeze(1), (int((n_fft-hop_length)/2), int((n_fft-hop_length)/2)), mode='reflect')
93
+ y = y.squeeze(1)
94
+
95
+ spec = torch.stft(y, n_fft, hop_length=hop_length, win_length=win_size, window=self.hann_window[str(y.device)],
96
+ center=center, pad_mode='reflect', normalized=False, onesided=True)
97
+ # print(111,spec)
98
+ spec = torch.sqrt(spec.pow(2).sum(-1)+(1e-9))
99
+ # print(222,spec)
100
+ spec = torch.matmul(self.mel_basis[str(fmax)+'_'+str(y.device)], spec)
101
+ # print(333,spec)
102
+ spec = dynamic_range_compression_torch(spec, clip_val=clip_val)
103
+ # print(444,spec)
104
+ return spec
105
+
106
+ def __call__(self, audiopath):
107
+ audio, sr = load_wav_to_torch(audiopath, target_sr=self.target_sr)
108
+ spect = self.get_mel(audio.unsqueeze(0)).squeeze(0)
109
+ return spect
110
+
111
+ stft = STFT()
vdecoder/hifigan/utils.py ADDED
@@ -0,0 +1,68 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import glob
2
+ import os
3
+ import matplotlib
4
+ import torch
5
+ from torch.nn.utils import weight_norm
6
+ matplotlib.use("Agg")
7
+ import matplotlib.pylab as plt
8
+
9
+
10
+ def plot_spectrogram(spectrogram):
11
+ fig, ax = plt.subplots(figsize=(10, 2))
12
+ im = ax.imshow(spectrogram, aspect="auto", origin="lower",
13
+ interpolation='none')
14
+ plt.colorbar(im, ax=ax)
15
+
16
+ fig.canvas.draw()
17
+ plt.close()
18
+
19
+ return fig
20
+
21
+
22
+ def init_weights(m, mean=0.0, std=0.01):
23
+ classname = m.__class__.__name__
24
+ if classname.find("Conv") != -1:
25
+ m.weight.data.normal_(mean, std)
26
+
27
+
28
+ def apply_weight_norm(m):
29
+ classname = m.__class__.__name__
30
+ if classname.find("Conv") != -1:
31
+ weight_norm(m)
32
+
33
+
34
+ def get_padding(kernel_size, dilation=1):
35
+ return int((kernel_size*dilation - dilation)/2)
36
+
37
+
38
+ def load_checkpoint(filepath, device):
39
+ assert os.path.isfile(filepath)
40
+ print("Loading '{}'".format(filepath))
41
+ checkpoint_dict = torch.load(filepath, map_location=device)
42
+ print("Complete.")
43
+ return checkpoint_dict
44
+
45
+
46
+ def save_checkpoint(filepath, obj):
47
+ print("Saving checkpoint to {}".format(filepath))
48
+ torch.save(obj, filepath)
49
+ print("Complete.")
50
+
51
+
52
+ def del_old_checkpoints(cp_dir, prefix, n_models=2):
53
+ pattern = os.path.join(cp_dir, prefix + '????????')
54
+ cp_list = glob.glob(pattern) # get checkpoint paths
55
+ cp_list = sorted(cp_list)# sort by iter
56
+ if len(cp_list) > n_models: # if more than n_models models are found
57
+ for cp in cp_list[:-n_models]:# delete the oldest models other than lastest n_models
58
+ open(cp, 'w').close()# empty file contents
59
+ os.unlink(cp)# delete file (move to trash when using Colab)
60
+
61
+
62
+ def scan_checkpoint(cp_dir, prefix):
63
+ pattern = os.path.join(cp_dir, prefix + '????????')
64
+ cp_list = glob.glob(pattern)
65
+ if len(cp_list) == 0:
66
+ return None
67
+ return sorted(cp_list)[-1]
68
+