Spaces:
Paused
Paused
| ''' | |
| * Tag2Text | |
| * Written by Xinyu Huang | |
| ''' | |
| import warnings | |
| warnings.filterwarnings("ignore") | |
| from .vit import VisionTransformer, interpolate_pos_embed | |
| from .swin_transformer import SwinTransformer, interpolate_relative_pos_embed | |
| from .med import BertConfig, BertModel, BertLMHeadModel | |
| from .utils import tra_array | |
| from transformers import BertTokenizer | |
| import torch | |
| from torch import nn | |
| import torch.nn.functional as F | |
| import os | |
| from urllib.parse import urlparse | |
| from timm.models.hub import download_cached_file | |
| import json | |
| import math | |
| import numpy as np | |
| def read_json(rpath): | |
| with open(rpath, 'r') as f: | |
| return json.load(f) | |
| # delete some tags that may disturb captioning | |
| # 127: "quarter"; 2961: "back"; 3351: "two"; 3265: "three"; 3338: "four"; 3355: "five"; 3359: "one" | |
| delete_tag_index = [127,2961, 3351, 3265, 3338, 3355, 3359] | |
| # adjust thresholds for some tags | |
| # default threshold: 0.68 | |
| # 2701: "person"; 2828: "man"; 1167: "woman"; | |
| tag_thrshold = {2701:0.7, 2828: 0.7, 1167: 0.7} | |
| class Tag2Text_Caption(nn.Module): | |
| def __init__(self, | |
| med_config = 'configs/med_config.json', | |
| image_size = 384, | |
| vit = 'base', | |
| vit_grad_ckpt = False, | |
| vit_ckpt_layer = 0, | |
| prompt = 'a picture of ', | |
| threshold = 0.68, | |
| ): | |
| """ | |
| Args: | |
| med_config (str): path for the mixture of encoder-decoder model's configuration file | |
| image_size (int): input image size | |
| vit (str): model size of vision transformer | |
| """ | |
| super().__init__() | |
| if vit=='swin_b': | |
| if image_size == 224: | |
| vision_config_path = 'configs/swin/config_swinB_224.json' | |
| elif image_size == 384: | |
| vision_config_path = 'configs/swin/config_swinB_384.json' | |
| vision_config = read_json(vision_config_path) | |
| assert image_size == vision_config['image_res'] | |
| # assert config['patch_size'] == 32 | |
| vision_width = vision_config['vision_width'] | |
| self.visual_encoder = SwinTransformer(img_size=vision_config['image_res'], | |
| patch_size=4, | |
| in_chans=3, | |
| embed_dim=vision_config['embed_dim'], | |
| depths=vision_config['depths'], | |
| num_heads=vision_config['num_heads'], | |
| window_size=vision_config['window_size'], | |
| mlp_ratio=4., | |
| qkv_bias=True, | |
| drop_rate=0.0, | |
| drop_path_rate=0.1, | |
| ape=False, | |
| patch_norm=True, | |
| use_checkpoint=False) | |
| else: | |
| self.visual_encoder, vision_width = create_vit(vit,image_size, vit_grad_ckpt, vit_ckpt_layer) | |
| self.tokenizer = init_tokenizer() | |
| # create the decoder | |
| decoder_config = BertConfig.from_json_file(med_config) | |
| decoder_config.encoder_width = 768 | |
| self.text_decoder = BertLMHeadModel(config=decoder_config) | |
| # create encoder | |
| encoder_config = BertConfig.from_json_file(med_config) | |
| encoder_config.encoder_width = vision_width | |
| self.tag_encoder = BertModel(config=encoder_config, add_pooling_layer=False) | |
| self.prompt = prompt | |
| self.prompt_length = len(self.tokenizer(self.prompt).input_ids)-1 | |
| self.threshold = threshold | |
| num_features = 768 | |
| self.num_class = 3429 | |
| q2l_config = BertConfig.from_json_file('configs/q2l_config.json') | |
| q2l_config.encoder_width = vision_width | |
| self.vision_multi = BertModel(config=q2l_config, add_pooling_layer=False) | |
| self.vision_multi.resize_token_embeddings(len(self.tokenizer)) | |
| self.label_embed = nn.Embedding(self.num_class, q2l_config.hidden_size) | |
| self.fc = GroupWiseLinear(self.num_class, num_features, bias=True) | |
| self.del_selfattention() | |
| tie_encoder_decoder_weights(self.tag_encoder,self.vision_multi,'',' ') | |
| self.tag_array = tra_array | |
| self.class_threshold = torch.ones(self.num_class) * self.threshold | |
| for key,value in tag_thrshold.items(): | |
| self.class_threshold[key] = value | |
| def del_selfattention(self): | |
| del self.vision_multi.embeddings | |
| for layer in self.vision_multi.encoder.layer: | |
| del layer.attention | |
| def generate(self, image, sample=False, num_beams=3, max_length=30, min_length=10, top_p=0.9, repetition_penalty=1.0, tag_input = None, return_tag_predict = False): | |
| image_embeds = self.visual_encoder(image) | |
| image_atts = torch.ones(image_embeds.size()[:-1],dtype=torch.long).to(image.device) | |
| #==============generate tag==============# | |
| if tag_input == None: | |
| image_spatial_embeds = image_embeds[:,1:,:] | |
| image_cls_embeds = image_embeds[:,0,:] | |
| bs = image_spatial_embeds.shape[0] | |
| label_embed = self.label_embed.weight.unsqueeze(0).repeat(bs,1,1) | |
| mlr_tagembedding = self.vision_multi(encoder_embeds = label_embed, | |
| encoder_hidden_states = image_embeds, | |
| encoder_attention_mask = image_atts, | |
| return_dict = False, | |
| mode = 'mlr', | |
| ) | |
| logits = self.fc(mlr_tagembedding[0]) | |
| # targets = torch.where(torch.sigmoid(logits) > self.threshold , torch.tensor(1.0).to(image.device), torch.zeros(self.num_class).to(image.device)) | |
| targets = torch.where(torch.sigmoid(logits) > self.class_threshold.to(image.device) , torch.tensor(1.0).to(image.device), torch.zeros(self.num_class).to(image.device)) | |
| tag = targets.cpu().numpy() | |
| tag[:,delete_tag_index] = 0 | |
| bs = image.size(0) | |
| tag_input = [] | |
| for b in range(bs): | |
| index = np.argwhere(tag[b] == 1) | |
| token = self.tag_array[index].squeeze(axis = 1) | |
| tag_input.append(' | '.join(token)) | |
| #========================================# | |
| if not sample: | |
| image_embeds = image_embeds.repeat_interleave(num_beams,dim=0) | |
| image_atts = image_atts.repeat_interleave(num_beams,dim=0) | |
| tag_input_temp = [] | |
| for tag in tag_input: | |
| for i in range(num_beams): | |
| tag_input_temp.append(tag) | |
| tag_input = tag_input_temp | |
| tag_input_tokenzier = self.tokenizer(tag_input, padding='max_length', truncation=True, max_length=40, | |
| return_tensors="pt").to(image.device) | |
| encoder_input_ids = tag_input_tokenzier.input_ids | |
| encoder_input_ids[:,0] = self.tokenizer.enc_token_id | |
| output_tagembedding = self.tag_encoder(encoder_input_ids, | |
| attention_mask = tag_input_tokenzier.attention_mask, | |
| encoder_hidden_states = image_embeds, | |
| encoder_attention_mask = image_atts, | |
| return_dict = True, | |
| ) | |
| prompt = [self.prompt] * image.size(0) | |
| input_ids = self.tokenizer(prompt, return_tensors="pt").input_ids.to(image.device) | |
| input_ids[:,0] = self.tokenizer.bos_token_id | |
| input_ids = input_ids[:, :-1] | |
| if sample: | |
| #nucleus sampling | |
| model_kwargs = {"encoder_hidden_states": output_tagembedding.last_hidden_state, "encoder_attention_mask":None} | |
| outputs = self.text_decoder.generate(input_ids=input_ids, | |
| max_length=max_length, | |
| min_length=min_length, | |
| do_sample=True, | |
| top_p=top_p, | |
| num_return_sequences=1, | |
| eos_token_id=self.tokenizer.sep_token_id, | |
| pad_token_id=self.tokenizer.pad_token_id, | |
| repetition_penalty=1.1, | |
| **model_kwargs) | |
| else: | |
| #beam search | |
| model_kwargs = {"encoder_hidden_states": output_tagembedding.last_hidden_state, "encoder_attention_mask":None} | |
| outputs = self.text_decoder.generate(input_ids=input_ids, | |
| max_length=max_length, | |
| min_length=min_length, | |
| num_beams=num_beams, | |
| eos_token_id=self.tokenizer.sep_token_id, | |
| pad_token_id=self.tokenizer.pad_token_id, | |
| repetition_penalty=repetition_penalty, | |
| **model_kwargs) | |
| captions = [] | |
| for output in outputs: | |
| caption = self.tokenizer.decode(output, skip_special_tokens=True) | |
| captions.append(caption[len(self.prompt):]) | |
| if return_tag_predict == True: | |
| if sample: | |
| return captions, tag_input | |
| else: | |
| return captions, tag_input[0:int(len(tag_input)/num_beams)] | |
| return captions | |
| def tag2text_caption(pretrained='',**kwargs): | |
| model = Tag2Text_Caption(**kwargs) | |
| if pretrained: | |
| if kwargs['vit'] == 'swin_b': | |
| model,msg = load_checkpoint_swinbase(model,pretrained,kwargs) | |
| else: | |
| model,msg = load_checkpoint(model,pretrained) | |
| # print('vit:',kwargs['vit']) | |
| # print('msg_v2',msg) | |
| return model | |
| from typing import List | |
| def tie_encoder_decoder_weights(encoder: nn.Module, decoder: nn.Module, base_model_prefix: str, skip_key:str): | |
| uninitialized_encoder_weights: List[str] = [] | |
| if decoder.__class__ != encoder.__class__: | |
| logger.info( | |
| f"{decoder.__class__} and {encoder.__class__} are not equal. In this case make sure that all encoder weights are correctly initialized." | |
| ) | |
| def tie_encoder_to_decoder_recursively( | |
| decoder_pointer: nn.Module, | |
| encoder_pointer: nn.Module, | |
| module_name: str, | |
| uninitialized_encoder_weights: List[str], | |
| skip_key: str, | |
| depth=0, | |
| ): | |
| assert isinstance(decoder_pointer, nn.Module) and isinstance( | |
| encoder_pointer, nn.Module | |
| ), f"{decoder_pointer} and {encoder_pointer} have to be of type torch.nn.Module" | |
| if hasattr(decoder_pointer, "weight") and skip_key not in module_name: | |
| assert hasattr(encoder_pointer, "weight") | |
| encoder_pointer.weight = decoder_pointer.weight | |
| if hasattr(decoder_pointer, "bias"): | |
| assert hasattr(encoder_pointer, "bias") | |
| encoder_pointer.bias = decoder_pointer.bias | |
| # print(module_name+' is tied') | |
| return | |
| encoder_modules = encoder_pointer._modules | |
| decoder_modules = decoder_pointer._modules | |
| if len(decoder_modules) > 0: | |
| assert ( | |
| len(encoder_modules) > 0 | |
| ), f"Encoder module {encoder_pointer} does not match decoder module {decoder_pointer}" | |
| all_encoder_weights = set([module_name + "/" + sub_name for sub_name in encoder_modules.keys()]) | |
| encoder_layer_pos = 0 | |
| for name, module in decoder_modules.items(): | |
| if name.isdigit(): | |
| encoder_name = str(int(name) + encoder_layer_pos) | |
| decoder_name = name | |
| if not isinstance(decoder_modules[decoder_name], type(encoder_modules[encoder_name])) and len( | |
| encoder_modules | |
| ) != len(decoder_modules): | |
| # this can happen if the name corresponds to the position in a list module list of layers | |
| # in this case the decoder has added a cross-attention that the encoder does not have | |
| # thus skip this step and subtract one layer pos from encoder | |
| encoder_layer_pos -= 1 | |
| continue | |
| elif name not in encoder_modules: | |
| continue | |
| elif depth > 500: | |
| raise ValueError( | |
| "Max depth of recursive function `tie_encoder_to_decoder` reached. It seems that there is a circular dependency between two or more `nn.Modules` of your model." | |
| ) | |
| else: | |
| decoder_name = encoder_name = name | |
| tie_encoder_to_decoder_recursively( | |
| decoder_modules[decoder_name], | |
| encoder_modules[encoder_name], | |
| module_name + "/" + name, | |
| uninitialized_encoder_weights, | |
| skip_key, | |
| depth=depth + 1, | |
| ) | |
| all_encoder_weights.remove(module_name + "/" + encoder_name) | |
| uninitialized_encoder_weights += list(all_encoder_weights) | |
| # tie weights recursively | |
| tie_encoder_to_decoder_recursively(decoder, encoder, base_model_prefix, uninitialized_encoder_weights, skip_key) | |
| class GroupWiseLinear(nn.Module): | |
| # could be changed to: | |
| # output = torch.einsum('ijk,zjk->ij', x, self.W) | |
| # or output = torch.einsum('ijk,jk->ij', x, self.W[0]) | |
| def __init__(self, num_class, hidden_dim, bias=True): | |
| super().__init__() | |
| self.num_class = num_class | |
| self.hidden_dim = hidden_dim | |
| self.bias = bias | |
| self.W = nn.Parameter(torch.Tensor(1, num_class, hidden_dim)) | |
| if bias: | |
| self.b = nn.Parameter(torch.Tensor(1, num_class)) | |
| self.reset_parameters() | |
| def reset_parameters(self): | |
| stdv = 1. / math.sqrt(self.W.size(2)) | |
| for i in range(self.num_class): | |
| self.W[0][i].data.uniform_(-stdv, stdv) | |
| if self.bias: | |
| for i in range(self.num_class): | |
| self.b[0][i].data.uniform_(-stdv, stdv) | |
| def forward(self, x): | |
| # x: B,K,d | |
| x = (self.W * x).sum(-1) | |
| if self.bias: | |
| x = x + self.b | |
| return x | |
| def init_tokenizer(): | |
| tokenizer = BertTokenizer.from_pretrained('bert-base-uncased') | |
| tokenizer.add_special_tokens({'bos_token':'[DEC]'}) | |
| tokenizer.add_special_tokens({'additional_special_tokens':['[ENC]']}) | |
| tokenizer.enc_token_id = tokenizer.additional_special_tokens_ids[0] | |
| return tokenizer | |
| def create_vit(vit, image_size, use_grad_checkpointing=False, ckpt_layer=0, drop_path_rate=0): | |
| assert vit in ['base', 'large'], "vit parameter must be base or large" | |
| if vit=='base': | |
| vision_width = 768 | |
| visual_encoder = VisionTransformer(img_size=image_size, patch_size=16, embed_dim=vision_width, depth=12, | |
| num_heads=12, use_grad_checkpointing=use_grad_checkpointing, ckpt_layer=ckpt_layer, | |
| drop_path_rate=0 or drop_path_rate | |
| ) | |
| elif vit=='large': | |
| vision_width = 1024 | |
| visual_encoder = VisionTransformer(img_size=image_size, patch_size=16, embed_dim=vision_width, depth=24, | |
| num_heads=16, use_grad_checkpointing=use_grad_checkpointing, ckpt_layer=ckpt_layer, | |
| drop_path_rate=0.1 or drop_path_rate | |
| ) | |
| return visual_encoder, vision_width | |
| def is_url(url_or_filename): | |
| parsed = urlparse(url_or_filename) | |
| return parsed.scheme in ("http", "https") | |
| def load_checkpoint(model,url_or_filename): | |
| if is_url(url_or_filename): | |
| cached_file = download_cached_file(url_or_filename, check_hash=False, progress=True) | |
| checkpoint = torch.load(cached_file, map_location='cpu') | |
| elif os.path.isfile(url_or_filename): | |
| checkpoint = torch.load(url_or_filename, map_location='cpu') | |
| else: | |
| raise RuntimeError('checkpoint url or path is invalid') | |
| state_dict = checkpoint['model'] | |
| state_dict['visual_encoder.pos_embed'] = interpolate_pos_embed(state_dict['visual_encoder.pos_embed'],model.visual_encoder) | |
| if 'visual_encoder_m.pos_embed' in model.state_dict().keys(): | |
| state_dict['visual_encoder_m.pos_embed'] = interpolate_pos_embed(state_dict['visual_encoder_m.pos_embed'], | |
| model.visual_encoder_m) | |
| for key in model.state_dict().keys(): | |
| if key in state_dict.keys(): | |
| if state_dict[key].shape!=model.state_dict()[key].shape: | |
| del state_dict[key] | |
| msg = model.load_state_dict(state_dict,strict=False) | |
| print('load checkpoint from %s'%url_or_filename) | |
| return model,msg | |
| def load_checkpoint_swinbase(model,url_or_filename,kwargs): | |
| if kwargs['image_size'] == 224: | |
| vision_config_path = 'configs/swin/config_swinB_224.json' | |
| elif kwargs['image_size'] == 384: | |
| vision_config_path = 'configs/swin/config_swinB_384.json' | |
| elif kwargs['image_size'] == 480: | |
| vision_config_path = 'configs/swin/config_swinB_480.json' | |
| elif kwargs['image_size'] == 576: | |
| vision_config_path = 'configs/swin/config_swinB_576.json' | |
| elif kwargs['image_size'] == 608: | |
| vision_config_path = 'configs/swin/config_swinB_608.json' | |
| window_size = read_json(vision_config_path)['window_size'] | |
| # print('--------------') | |
| # print(url_or_filename) | |
| # print('--------------') | |
| if is_url(url_or_filename): | |
| cached_file = download_cached_file(url_or_filename, check_hash=False, progress=True) | |
| checkpoint = torch.load(cached_file, map_location='cpu') | |
| elif os.path.isfile(url_or_filename): | |
| checkpoint = torch.load(url_or_filename, map_location='cpu') | |
| else: | |
| raise RuntimeError('checkpoint url or path is invalid') | |
| state_dict = checkpoint['model'] | |
| for k in list(state_dict.keys()): | |
| if 'relative_position_bias_table' in k: | |
| dst_num_pos = (2 * window_size - 1) ** 2 | |
| state_dict[k] = interpolate_relative_pos_embed(state_dict[k], dst_num_pos, param_name=k) | |
| elif ('relative_position_index' in k) or ('attn_mask' in k): | |
| del state_dict[k] | |
| msg = model.load_state_dict(state_dict,strict=False) | |
| print('load checkpoint from %s'%url_or_filename) | |
| return model,msg | |