|
|
from fastapi import FastAPI |
|
|
from pydantic import BaseModel |
|
|
import joblib |
|
|
import numpy as np |
|
|
import os |
|
|
|
|
|
app = FastAPI() |
|
|
|
|
|
|
|
|
BASE_DIR = os.path.dirname(os.path.abspath(__file__)) |
|
|
MODEL_DIR = os.path.join(BASE_DIR, "models") |
|
|
|
|
|
stockout_model = joblib.load( |
|
|
os.path.join(MODEL_DIR, "restaurant_stockout_classifier.joblib") |
|
|
) |
|
|
|
|
|
wastage_model = joblib.load( |
|
|
os.path.join(MODEL_DIR, "restaurant_wastage_regressor.joblib") |
|
|
) |
|
|
|
|
|
|
|
|
class PredictRequest(BaseModel): |
|
|
features: list[float] |
|
|
|
|
|
|
|
|
@app.get("/") |
|
|
def root(): |
|
|
return { |
|
|
"status": "ok", |
|
|
"message": "ProjectY Classifier + Regressor API is running" |
|
|
} |
|
|
|
|
|
|
|
|
@app.post("/predict/stockout") |
|
|
def predict_stockout(req: PredictRequest): |
|
|
X = np.array([req.features]) |
|
|
prediction = stockout_model.predict(X)[0] |
|
|
|
|
|
response = { |
|
|
"prediction": int(prediction) if isinstance(prediction, (int, np.integer)) else float(prediction) |
|
|
} |
|
|
|
|
|
|
|
|
if hasattr(stockout_model, "predict_proba"): |
|
|
response["probabilities"] = stockout_model.predict_proba(X)[0].tolist() |
|
|
|
|
|
return response |
|
|
|
|
|
|
|
|
@app.post("/predict/wastage") |
|
|
def predict_wastage(req: PredictRequest): |
|
|
X = np.array([req.features]) |
|
|
prediction = wastage_model.predict(X)[0] |
|
|
|
|
|
return { |
|
|
"prediction": float(prediction) |
|
|
} |
|
|
|