Spaces:
Sleeping
Sleeping
# # # import streamlit as st | |
# # # from dotenv import load_dotenv | |
# # # from PyPDF2 import PdfReader | |
# # # from langchain.text_splitter import CharacterTextSplitter | |
# # # from langchain.embeddings import OpenAIEmbeddings, HuggingFaceInstructEmbeddings | |
# # # from langchain.vectorstores import FAISS | |
# # # from langchain.chat_models import ChatOpenAI | |
# # # from langchain.memory import ConversationBufferMemory | |
# # # from langchain.chains import ConversationalRetrievalChain | |
# # # from htmlTemplates import css, bot_template, user_template | |
# # # from langchain.llms import HuggingFaceHub | |
# # # def get_pdf_text(pdf_docs): | |
# # # text = "" | |
# # # for pdf in pdf_docs: | |
# # # pdf_reader = PdfReader(pdf) | |
# # # for page in pdf_reader.pages: | |
# # # text += page.extract_text() | |
# # # return text | |
# # # def get_text_chunks(text): | |
# # # text_splitter = CharacterTextSplitter( | |
# # # separator="\n", | |
# # # chunk_size=1000, | |
# # # chunk_overlap=200, | |
# # # length_function=len | |
# # # ) | |
# # # chunks = text_splitter.split_text(text) | |
# # # return chunks | |
# # # def get_vectorstore(text_chunks): | |
# # # embeddings = OpenAIEmbeddings() | |
# # # # embeddings = HuggingFaceInstructEmbeddings(model_name="hkunlp/instructor-xl") | |
# # # vectorstore = FAISS.from_texts(texts=text_chunks, embedding=embeddings) | |
# # # return vectorstore | |
# # # def get_conversation_chain(vectorstore): | |
# # # llm = ChatOpenAI() | |
# # # # llm = HuggingFaceHub(repo_id="google/flan-t5-xxl", model_kwargs={"temperature":0.5, "max_length":512}) | |
# # # memory = ConversationBufferMemory( | |
# # # memory_key='chat_history', return_messages=True) | |
# # # conversation_chain = ConversationalRetrievalChain.from_llm( | |
# # # llm=llm, | |
# # # retriever=vectorstore.as_retriever(), | |
# # # memory=memory | |
# # # ) | |
# # # return conversation_chain | |
# # # def handle_userinput(user_question): | |
# # # response = st.session_state.conversation({'question': user_question}) | |
# # # st.session_state.chat_history = response['chat_history'] | |
# # # for i, message in enumerate(st.session_state.chat_history): | |
# # # if i % 2 == 0: | |
# # # st.write(user_template.replace( | |
# # # "{{MSG}}", message.content), unsafe_allow_html=True) | |
# # # else: | |
# # # st.write(bot_template.replace( | |
# # # "{{MSG}}", message.content), unsafe_allow_html=True) | |
# # # def main(): | |
# # # load_dotenv() | |
# # # st.set_page_config(page_title="Mental Health Support", | |
# # # page_icon=":books:") | |
# # # st.write(css, unsafe_allow_html=True) | |
# # # if "conversation" not in st.session_state: | |
# # # st.session_state.conversation = None | |
# # # if "chat_history" not in st.session_state: | |
# # # st.session_state.chat_history = None | |
# # # st.header("Mental Health Support :brain:") | |
# # # user_question = st.text_input("Ask a question about your documents:") | |
# # # if user_question: | |
# # # handle_userinput(user_question) | |
# # # with st.sidebar: | |
# # # st.subheader("Your documents") | |
# # # pdf_docs = st.file_uploader( | |
# # # "Upload your PDFs here and click on 'Process'", accept_multiple_files=True) | |
# # # if st.button("Process"): | |
# # # with st.spinner("Processing"): | |
# # # # get pdf text | |
# # # raw_text = get_pdf_text(pdf_docs) | |
# # # # get the text chunks | |
# # # text_chunks = get_text_chunks(raw_text) | |
# # # # create vector store | |
# # # vectorstore = get_vectorstore(text_chunks) | |
# # # # create conversation chain | |
# # # st.session_state.conversation = get_conversation_chain( | |
# # # vectorstore) | |
# # # if __name__ == '__main__': | |
# # # main() | |
# # # import streamlit as st | |
# # # from dotenv import load_dotenv | |
# # # from PyPDF2 import PdfReader | |
# # # from langchain.text_splitter import CharacterTextSplitter | |
# # # from langchain.embeddings import OpenAIEmbeddings | |
# # # # from langchain.embeddings import HuggingFaceInstructEmbeddings | |
# # # from langchain.vectorstores import FAISS | |
# # # from langchain.chat_models import ChatOpenAI | |
# # # from langchain.memory import ConversationBufferMemory | |
# # # from langchain.chains import ConversationalRetrievalChain | |
# # # from htmlTemplates import css, bot_template, user_template | |
# # # # from langchain.llms import HuggingFaceHub | |
# # # # from streamlit_option_menu import option_menu | |
# # # import pyttsx3 | |
# # # def get_pdf_text(pdf_paths): | |
# # # text = "" | |
# # # for pdf_path in pdf_paths: | |
# # # with open(pdf_path, 'rb') as pdf_file: | |
# # # pdf_reader = PdfReader(pdf_file) | |
# # # for page in pdf_reader.pages: | |
# # # text += page.extract_text() | |
# # # return text | |
# # # def get_text_chunks(text): | |
# # # text_splitter = CharacterTextSplitter( | |
# # # separator="\n", | |
# # # chunk_size=1000, | |
# # # chunk_overlap=200, | |
# # # length_function=len | |
# # # ) | |
# # # chunks = text_splitter.split_text(text) | |
# # # return chunks | |
# # # def get_vectorstore(text_chunks): | |
# # # embeddings = OpenAIEmbeddings() | |
# # # #embeddings = HuggingFaceInstructEmbeddings(model_name="nomic-ai/gpt4all-j") | |
# # # vectorstore = FAISS.from_texts(texts=text_chunks, embedding=embeddings) | |
# # # return vectorstore | |
# # # def get_conversation_chain(vectorstore): | |
# # # llm = ChatOpenAI() | |
# # # #llm = HuggingFaceHub(repo_id="google/flan-t5-xxl", model_kwargs={"temperature":0.5, "max_length":512}) | |
# # # memory = ConversationBufferMemory( | |
# # # memory_key='chat_history', return_messages=True) | |
# # # conversation_chain = ConversationalRetrievalChain.from_llm( | |
# # # llm=llm, | |
# # # retriever=vectorstore.as_retriever(), | |
# # # memory=memory | |
# # # ) | |
# # # return conversation_chain | |
# # # def handle_userinput(user_question): | |
# # # response = st.session_state.conversation({'question': user_question}) | |
# # # st.session_state.chat_history = response['chat_history'] | |
# # # for i, message in enumerate(st.session_state.chat_history): | |
# # # if i % 2 == 0: | |
# # # st.write(user_template.replace( | |
# # # "{{MSG}}", message.content), unsafe_allow_html=True) | |
# # # else: | |
# # # st.write(bot_template.replace( | |
# # # "{{MSG}}", message.content), unsafe_allow_html=True) | |
# # # engine = pyttsx3.init() | |
# # # engine.say(response['answer']) | |
# # # engine.runAndWait() | |
# # # def main(): | |
# # # load_dotenv() | |
# # # st.set_page_config(page_title="Mental Health Support", page_icon=":brain:") | |
# # # st.write(css, unsafe_allow_html=True) | |
# # # if "conversation" not in st.session_state: | |
# # # st.session_state.conversation = None | |
# # # if "chat_history" not in st.session_state: | |
# # # st.session_state.chat_history = None | |
# # # st.header("Mental Health Support :brain:") | |
# # # pdf_paths = [ | |
# # # 'C:/Users/sharm/Downloads/ask-multiple-pdfs-main/ask-multiple-pdfs-main/Chat_data.pdf', | |
# # # 'C:/Users/sharm/Downloads/ask-multiple-pdfs-main/ask-multiple-pdfs-main/class 10 history ch 3.pdf' | |
# # # ] | |
# # # # get pdf text | |
# # # raw_text = get_pdf_text(pdf_paths) | |
# # # # get the text chunks | |
# # # text_chunks = get_text_chunks(raw_text) | |
# # # # create vector store | |
# # # vectorstore = get_vectorstore(text_chunks) | |
# # # # create conversation chain | |
# # # st.session_state.conversation = get_conversation_chain(vectorstore) | |
# # # user_question = st.text_input("Your therapist is there for you!:") | |
# # # if user_question and st.session_state.conversation: | |
# # # handle_userinput(user_question) | |
# # # if __name__ == '__main__': | |
# # # main() | |
import streamlit as st | |
from dotenv import load_dotenv | |
from PyPDF2 import PdfReader | |
from langchain.text_splitter import CharacterTextSplitter | |
from langchain.embeddings import OpenAIEmbeddings,HuggingFaceInstructEmbeddings | |
from langchain.vectorstores import FAISS | |
from langchain.chat_models import ChatOpenAI | |
from langchain.memory import ConversationBufferMemory | |
from langchain.chains import ConversationalRetrievalChain | |
from langchain.llms import HuggingFaceHub | |
from htmlTemplates import css, bot_template, user_template | |
#from InstructorEmbedding import INSTRUCTOR | |
import tempfile | |
import ttsmms | |
import soundfile as sf | |
from streamlit.components.v1 import html | |
def get_pdf_text(pdf_paths): | |
text = "" | |
for pdf_path in pdf_paths: | |
with open(pdf_path, 'rb') as pdf_file: | |
pdf_reader = PdfReader(pdf_file) | |
for page in pdf_reader.pages: | |
text += page.extract_text() | |
return text | |
def get_text_chunks(text): | |
text_splitter = CharacterTextSplitter( | |
separator="\n", | |
chunk_size=1000, | |
chunk_overlap=200, | |
length_function=len | |
) | |
chunks = text_splitter.split_text(text) | |
return chunks | |
def get_vectorstore(text_chunks): | |
#embeddings = OpenAIEmbeddings() | |
embeddings = HuggingFaceInstructEmbeddings(model_name="hkunlp/instructor-base") | |
vectorstore = FAISS.from_texts(texts=text_chunks, embedding=embeddings) | |
return vectorstore | |
def get_conversation_chain(vectorstore): | |
llm = ChatOpenAI() | |
memory = ConversationBufferMemory( | |
memory_key='chat_history', return_messages=True) | |
conversation_chain = ConversationalRetrievalChain.from_llm( | |
llm=llm, | |
retriever=vectorstore.as_retriever(), | |
memory=memory | |
) | |
return conversation_chain | |
def handle_userinput(user_question): | |
response = st.session_state.conversation({'question': user_question}) | |
st.session_state.chat_history = response['chat_history'] | |
for i, message in enumerate(st.session_state.chat_history): | |
if i % 2 == 0: | |
st.write(user_template.replace( | |
"{{MSG}}", message.content), unsafe_allow_html=True) | |
else: | |
st.write(bot_template.replace( | |
"{{MSG}}", message.content), unsafe_allow_html=True) | |
audio_path = tempfile.NamedTemporaryFile(delete=False, suffix=".wav").name | |
tts = ttsmms.TTS("data/eng") # Update with the correct path | |
wav = tts.synthesis(response['answer']) | |
sf.write(audio_path, wav["x"], wav["sampling_rate"]) | |
st.audio(audio_path, format="audio/wav", start_time=0, sample_rate=wav["sampling_rate"]) | |
def main(): | |
load_dotenv() | |
st.set_page_config(page_title="Mental Health Support", page_icon=":brain:") | |
st.write(css, unsafe_allow_html=True) | |
if "conversation" not in st.session_state: | |
st.session_state.conversation = None | |
if "chat_history" not in st.session_state: | |
st.session_state.chat_history = None | |
st.header("Mental Health Support :brain:") | |
pdf_paths = [ | |
'Chat_data.pdf' | |
] | |
raw_text = get_pdf_text(pdf_paths) | |
text_chunks = get_text_chunks(raw_text) | |
vectorstore = get_vectorstore(text_chunks) | |
st.session_state.conversation = get_conversation_chain(vectorstore) | |
user_question = st.text_input("Your therapist is there for you!:") | |
if user_question and st.session_state.conversation: | |
handle_userinput(user_question) | |
if __name__ == '__main__': | |
main() | |
# my_js = """ | |
# alert("Please don't forget to enter you daily details!!!"); | |
# """ | |
# # Wrapt the javascript as html code | |
# my_html = f"<script>{my_js}</script>" | |
# # Execute your app | |
# html(my_html) |