BrightPsych / app.py
Yash345's picture
Update app.py
464fb2b verified
raw
history blame
11.8 kB
# # # import streamlit as st
# # # from dotenv import load_dotenv
# # # from PyPDF2 import PdfReader
# # # from langchain.text_splitter import CharacterTextSplitter
# # # from langchain.embeddings import OpenAIEmbeddings, HuggingFaceInstructEmbeddings
# # # from langchain.vectorstores import FAISS
# # # from langchain.chat_models import ChatOpenAI
# # # from langchain.memory import ConversationBufferMemory
# # # from langchain.chains import ConversationalRetrievalChain
# # # from htmlTemplates import css, bot_template, user_template
# # # from langchain.llms import HuggingFaceHub
# # # def get_pdf_text(pdf_docs):
# # # text = ""
# # # for pdf in pdf_docs:
# # # pdf_reader = PdfReader(pdf)
# # # for page in pdf_reader.pages:
# # # text += page.extract_text()
# # # return text
# # # def get_text_chunks(text):
# # # text_splitter = CharacterTextSplitter(
# # # separator="\n",
# # # chunk_size=1000,
# # # chunk_overlap=200,
# # # length_function=len
# # # )
# # # chunks = text_splitter.split_text(text)
# # # return chunks
# # # def get_vectorstore(text_chunks):
# # # embeddings = OpenAIEmbeddings()
# # # # embeddings = HuggingFaceInstructEmbeddings(model_name="hkunlp/instructor-xl")
# # # vectorstore = FAISS.from_texts(texts=text_chunks, embedding=embeddings)
# # # return vectorstore
# # # def get_conversation_chain(vectorstore):
# # # llm = ChatOpenAI()
# # # # llm = HuggingFaceHub(repo_id="google/flan-t5-xxl", model_kwargs={"temperature":0.5, "max_length":512})
# # # memory = ConversationBufferMemory(
# # # memory_key='chat_history', return_messages=True)
# # # conversation_chain = ConversationalRetrievalChain.from_llm(
# # # llm=llm,
# # # retriever=vectorstore.as_retriever(),
# # # memory=memory
# # # )
# # # return conversation_chain
# # # def handle_userinput(user_question):
# # # response = st.session_state.conversation({'question': user_question})
# # # st.session_state.chat_history = response['chat_history']
# # # for i, message in enumerate(st.session_state.chat_history):
# # # if i % 2 == 0:
# # # st.write(user_template.replace(
# # # "{{MSG}}", message.content), unsafe_allow_html=True)
# # # else:
# # # st.write(bot_template.replace(
# # # "{{MSG}}", message.content), unsafe_allow_html=True)
# # # def main():
# # # load_dotenv()
# # # st.set_page_config(page_title="Mental Health Support",
# # # page_icon=":books:")
# # # st.write(css, unsafe_allow_html=True)
# # # if "conversation" not in st.session_state:
# # # st.session_state.conversation = None
# # # if "chat_history" not in st.session_state:
# # # st.session_state.chat_history = None
# # # st.header("Mental Health Support :brain:")
# # # user_question = st.text_input("Ask a question about your documents:")
# # # if user_question:
# # # handle_userinput(user_question)
# # # with st.sidebar:
# # # st.subheader("Your documents")
# # # pdf_docs = st.file_uploader(
# # # "Upload your PDFs here and click on 'Process'", accept_multiple_files=True)
# # # if st.button("Process"):
# # # with st.spinner("Processing"):
# # # # get pdf text
# # # raw_text = get_pdf_text(pdf_docs)
# # # # get the text chunks
# # # text_chunks = get_text_chunks(raw_text)
# # # # create vector store
# # # vectorstore = get_vectorstore(text_chunks)
# # # # create conversation chain
# # # st.session_state.conversation = get_conversation_chain(
# # # vectorstore)
# # # if __name__ == '__main__':
# # # main()
# # # import streamlit as st
# # # from dotenv import load_dotenv
# # # from PyPDF2 import PdfReader
# # # from langchain.text_splitter import CharacterTextSplitter
# # # from langchain.embeddings import OpenAIEmbeddings
# # # # from langchain.embeddings import HuggingFaceInstructEmbeddings
# # # from langchain.vectorstores import FAISS
# # # from langchain.chat_models import ChatOpenAI
# # # from langchain.memory import ConversationBufferMemory
# # # from langchain.chains import ConversationalRetrievalChain
# # # from htmlTemplates import css, bot_template, user_template
# # # # from langchain.llms import HuggingFaceHub
# # # # from streamlit_option_menu import option_menu
# # # import pyttsx3
# # # def get_pdf_text(pdf_paths):
# # # text = ""
# # # for pdf_path in pdf_paths:
# # # with open(pdf_path, 'rb') as pdf_file:
# # # pdf_reader = PdfReader(pdf_file)
# # # for page in pdf_reader.pages:
# # # text += page.extract_text()
# # # return text
# # # def get_text_chunks(text):
# # # text_splitter = CharacterTextSplitter(
# # # separator="\n",
# # # chunk_size=1000,
# # # chunk_overlap=200,
# # # length_function=len
# # # )
# # # chunks = text_splitter.split_text(text)
# # # return chunks
# # # def get_vectorstore(text_chunks):
# # # embeddings = OpenAIEmbeddings()
# # # #embeddings = HuggingFaceInstructEmbeddings(model_name="nomic-ai/gpt4all-j")
# # # vectorstore = FAISS.from_texts(texts=text_chunks, embedding=embeddings)
# # # return vectorstore
# # # def get_conversation_chain(vectorstore):
# # # llm = ChatOpenAI()
# # # #llm = HuggingFaceHub(repo_id="google/flan-t5-xxl", model_kwargs={"temperature":0.5, "max_length":512})
# # # memory = ConversationBufferMemory(
# # # memory_key='chat_history', return_messages=True)
# # # conversation_chain = ConversationalRetrievalChain.from_llm(
# # # llm=llm,
# # # retriever=vectorstore.as_retriever(),
# # # memory=memory
# # # )
# # # return conversation_chain
# # # def handle_userinput(user_question):
# # # response = st.session_state.conversation({'question': user_question})
# # # st.session_state.chat_history = response['chat_history']
# # # for i, message in enumerate(st.session_state.chat_history):
# # # if i % 2 == 0:
# # # st.write(user_template.replace(
# # # "{{MSG}}", message.content), unsafe_allow_html=True)
# # # else:
# # # st.write(bot_template.replace(
# # # "{{MSG}}", message.content), unsafe_allow_html=True)
# # # engine = pyttsx3.init()
# # # engine.say(response['answer'])
# # # engine.runAndWait()
# # # def main():
# # # load_dotenv()
# # # st.set_page_config(page_title="Mental Health Support", page_icon=":brain:")
# # # st.write(css, unsafe_allow_html=True)
# # # if "conversation" not in st.session_state:
# # # st.session_state.conversation = None
# # # if "chat_history" not in st.session_state:
# # # st.session_state.chat_history = None
# # # st.header("Mental Health Support :brain:")
# # # pdf_paths = [
# # # 'C:/Users/sharm/Downloads/ask-multiple-pdfs-main/ask-multiple-pdfs-main/Chat_data.pdf',
# # # 'C:/Users/sharm/Downloads/ask-multiple-pdfs-main/ask-multiple-pdfs-main/class 10 history ch 3.pdf'
# # # ]
# # # # get pdf text
# # # raw_text = get_pdf_text(pdf_paths)
# # # # get the text chunks
# # # text_chunks = get_text_chunks(raw_text)
# # # # create vector store
# # # vectorstore = get_vectorstore(text_chunks)
# # # # create conversation chain
# # # st.session_state.conversation = get_conversation_chain(vectorstore)
# # # user_question = st.text_input("Your therapist is there for you!:")
# # # if user_question and st.session_state.conversation:
# # # handle_userinput(user_question)
# # # if __name__ == '__main__':
# # # main()
import streamlit as st
from dotenv import load_dotenv
from PyPDF2 import PdfReader
from langchain.text_splitter import CharacterTextSplitter
from langchain.embeddings import OpenAIEmbeddings,HuggingFaceInstructEmbeddings
from langchain.vectorstores import FAISS
from langchain.chat_models import ChatOpenAI
from langchain.memory import ConversationBufferMemory
from langchain.chains import ConversationalRetrievalChain
from langchain.llms import HuggingFaceHub
from htmlTemplates import css, bot_template, user_template
#from InstructorEmbedding import INSTRUCTOR
import tempfile
import ttsmms
import soundfile as sf
from streamlit.components.v1 import html
def get_pdf_text(pdf_paths):
text = ""
for pdf_path in pdf_paths:
with open(pdf_path, 'rb') as pdf_file:
pdf_reader = PdfReader(pdf_file)
for page in pdf_reader.pages:
text += page.extract_text()
return text
def get_text_chunks(text):
text_splitter = CharacterTextSplitter(
separator="\n",
chunk_size=1000,
chunk_overlap=200,
length_function=len
)
chunks = text_splitter.split_text(text)
return chunks
def get_vectorstore(text_chunks):
#embeddings = OpenAIEmbeddings()
embeddings = HuggingFaceInstructEmbeddings(model_name="hkunlp/instructor-base")
vectorstore = FAISS.from_texts(texts=text_chunks, embedding=embeddings)
return vectorstore
def get_conversation_chain(vectorstore):
llm = ChatOpenAI()
memory = ConversationBufferMemory(
memory_key='chat_history', return_messages=True)
conversation_chain = ConversationalRetrievalChain.from_llm(
llm=llm,
retriever=vectorstore.as_retriever(),
memory=memory
)
return conversation_chain
def handle_userinput(user_question):
response = st.session_state.conversation({'question': user_question})
st.session_state.chat_history = response['chat_history']
for i, message in enumerate(st.session_state.chat_history):
if i % 2 == 0:
st.write(user_template.replace(
"{{MSG}}", message.content), unsafe_allow_html=True)
else:
st.write(bot_template.replace(
"{{MSG}}", message.content), unsafe_allow_html=True)
audio_path = tempfile.NamedTemporaryFile(delete=False, suffix=".wav").name
tts = ttsmms.TTS("data/eng") # Update with the correct path
wav = tts.synthesis(response['answer'])
sf.write(audio_path, wav["x"], wav["sampling_rate"])
st.audio(audio_path, format="audio/wav", start_time=0, sample_rate=wav["sampling_rate"])
def main():
load_dotenv()
st.set_page_config(page_title="Mental Health Support", page_icon=":brain:")
st.write(css, unsafe_allow_html=True)
if "conversation" not in st.session_state:
st.session_state.conversation = None
if "chat_history" not in st.session_state:
st.session_state.chat_history = None
st.header("Mental Health Support :brain:")
pdf_paths = [
'Chat_data.pdf'
]
raw_text = get_pdf_text(pdf_paths)
text_chunks = get_text_chunks(raw_text)
vectorstore = get_vectorstore(text_chunks)
st.session_state.conversation = get_conversation_chain(vectorstore)
user_question = st.text_input("Your therapist is there for you!:")
if user_question and st.session_state.conversation:
handle_userinput(user_question)
if __name__ == '__main__':
main()
# my_js = """
# alert("Please don't forget to enter you daily details!!!");
# """
# # Wrapt the javascript as html code
# my_html = f"<script>{my_js}</script>"
# # Execute your app
# html(my_html)