Yasaman commited on
Commit
6380fd4
1 Parent(s): df29dc8

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +32 -0
app.py ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ import hopsworks
3
+ import joblib
4
+ import pandas as pd
5
+ import datetime
6
+ from functions import get_weather_data_weekly, data_encoder, get_aplevel, get_color
7
+
8
+
9
+ today = datetime.date.today()
10
+ city = "Paris"
11
+ weekly_data = get_weather_data_weekly(city, today)
12
+
13
+ mr = project.get_model_registry()
14
+ model = mr.get_model("gradient_boost_model", version=1)
15
+ model_dir = model.download()
16
+ model = joblib.load(model_dir + "/model.pkl")
17
+
18
+
19
+ preds = model.predict(data_encoder(weekly_data)).astype(int)
20
+
21
+ air_pollution_level = ['Good', 'Moderate', 'Unhealthy for sensitive Groups','Unhealthy' ,'Very Unhealthy', 'Hazardous']
22
+ poll_level = get_aplevel(preds.T.reshape(-1, 1), air_pollution_level)
23
+
24
+ next_week_datetime = [today + datetime.timedelta(days=d) for d in range(7)]
25
+ next_week_str = [f"{days.strftime('%A')}, {days.strftime('%Y-%m-%d')}" for days in next_week_datetime]
26
+
27
+ df = pd.DataFrame(data=[preds, poll_level], index=["AQI", "Air pollution level"], columns=next_week_str)
28
+
29
+ st.write("Here they are!")
30
+ st.dataframe(df.style.apply(get_color, subset=(["Air pollution level"], slice(None))))
31
+
32
+ st.button("Re-run")