Spaces:
Running
Running
YSMlearnsCode
commited on
Commit
·
91b5fdf
1
Parent(s):
e61b0ad
corrected waste categories, added readme and model training notebook and sample images
Browse files- README.md +67 -3
- images/sample_image.webp +0 -0
- images/sample_image_1.webp +0 -0
- src/model/training_mulltrenner9000.ipynb +279 -0
- src/process/process.py +1 -1
README.md
CHANGED
|
@@ -10,8 +10,72 @@ app_file: app.py
|
|
| 10 |
pinned: false
|
| 11 |
---
|
| 12 |
|
| 13 |
-
# Mülltrenner9000
|
|
|
|
| 14 |
|
| 15 |
-
|
| 16 |
-
An instance segmentation app for waste classification, built with Gradio and YOLOv8.
|
| 17 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
pinned: false
|
| 11 |
---
|
| 12 |
|
| 13 |
+
# Mülltrenner9000 ♻️
|
| 14 |
+
**Bin there, sorted that.**
|
| 15 |
|
| 16 |
+
An instance segmentation app for waste classification, built with Gradio and YOLOv11.
|
|
|
|
| 17 |
|
| 18 |
+
Mülltrenner9000 is a smart instance segmentation web app that classifies and segments waste into **59 categories**, recommending the correct **German recycling bin**—such as Gelbe Tonne, Restmüll, or Pfand—based on real-time object detection.
|
| 19 |
+
|
| 20 |
+
The model uses a fine-tuned **YOLOv11 segmentation** model (YOLO11m-seg) and offers an interactive Gradio-based UI for waste classification and bin assignment.
|
| 21 |
+
|
| 22 |
+
---
|
| 23 |
+
|
| 24 |
+
🔗 **Try it on Hugging Face Spaces**: [Mülltrenner9000 – Hugging Face Space](https://huggingface.co/spaces/Yas1n/mulltrenner9000)
|
| 25 |
+
|
| 26 |
+
---
|
| 27 |
+
## 🧠 What It Does
|
| 28 |
+
|
| 29 |
+
- ✅ **Instance Segmentation** of individual waste items
|
| 30 |
+
- ✅ **Classification** into correct bins:
|
| 31 |
+
- **Yellow Bin (Gelbe Tonne)** – Plastics & Metals
|
| 32 |
+
- **Grey Bin (Restmüll)** – General Waste
|
| 33 |
+
- **Green Bin (Biotonne)** – Biodegradable Waste
|
| 34 |
+
- **Blue Bin (Papiertonne)** – Paper & Cardboard
|
| 35 |
+
- **Glascontainer** – Glass Waste
|
| 36 |
+
- **Hazardous Waste (Sondermüll)** – e.g. Batteries, Chemicals
|
| 37 |
+
- **Deposit Return (Pfand)** – Refundable items
|
| 38 |
+
- ✅ **Real-time segmentation masks** with bin color overlays and labels
|
| 39 |
+
|
| 40 |
+
---
|
| 41 |
+
|
| 42 |
+
## 🗂 Dataset
|
| 43 |
+
|
| 44 |
+
- **Source:** [TACO: Trash Annotations in Context (Roboflow)](https://universe.roboflow.com/mohamed-traore-2ekkp/taco-trash-annotations-in-context/dataset/15)
|
| 45 |
+
- **Annotations:** Pixel-level masks + class labels
|
| 46 |
+
- **Images:** 3147 for training, 299 for validation
|
| 47 |
+
- **Classes:** 59 object types
|
| 48 |
+
|
| 49 |
+
---
|
| 50 |
+
|
| 51 |
+
## 🛠 Model Training
|
| 52 |
+
|
| 53 |
+
- **Model**: [YOLOv11 (YOLO11m-seg)](https://github.com/ultralytics/ultralytics)
|
| 54 |
+
- **Backbone**: Fine-tuned with heavy data augmentation (RandAugment, CLAHE, etc.)
|
| 55 |
+
- **Epochs**: Trained for 70 epochs
|
| 56 |
+
- **Batch Size**: 16
|
| 57 |
+
- **Optimizer**: SGD
|
| 58 |
+
- **Learning Rate**: Final stage LR tuned to `0.001`
|
| 59 |
+
- **Mixed Precision**: AMP enabled
|
| 60 |
+
|
| 61 |
+
---
|
| 62 |
+
|
| 63 |
+
## 🖼 Sample Output
|
| 64 |
+
|
| 65 |
+
Here is a sample segmentation and classification output of Mülltrenner9000:
|
| 66 |
+
|
| 67 |
+

|
| 68 |
+

|
| 69 |
+
|
| 70 |
+
|
| 71 |
+
---
|
| 72 |
+
|
| 73 |
+
## 🤝 Contribution
|
| 74 |
+
|
| 75 |
+
We welcome contributions from the community, whether it's in the form of bug reports, improvements, documentation, or new features.
|
| 76 |
+
|
| 77 |
+
---
|
| 78 |
+
|
| 79 |
+
## 📄 License
|
| 80 |
+
|
| 81 |
+
This project is licensed under the **MIT License**. See the `LICENSE` file for more details.
|
images/sample_image.webp
ADDED
|
images/sample_image_1.webp
ADDED
|
src/model/training_mulltrenner9000.ipynb
ADDED
|
@@ -0,0 +1,279 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"cells": [
|
| 3 |
+
{
|
| 4 |
+
"cell_type": "code",
|
| 5 |
+
"execution_count": null,
|
| 6 |
+
"metadata": {
|
| 7 |
+
"colab": {
|
| 8 |
+
"base_uri": "https://localhost:8080/"
|
| 9 |
+
},
|
| 10 |
+
"id": "3uIkSzt52mUL",
|
| 11 |
+
"outputId": "96aacaf4-2244-4799-e1df-4595c67125c7"
|
| 12 |
+
},
|
| 13 |
+
"outputs": [
|
| 14 |
+
{
|
| 15 |
+
"name": "stdout",
|
| 16 |
+
"output_type": "stream",
|
| 17 |
+
"text": [
|
| 18 |
+
"Mounted at /content/drive\n"
|
| 19 |
+
]
|
| 20 |
+
}
|
| 21 |
+
],
|
| 22 |
+
"source": [
|
| 23 |
+
"from google.colab import drive\n",
|
| 24 |
+
"drive.mount('/content/drive')"
|
| 25 |
+
]
|
| 26 |
+
},
|
| 27 |
+
{
|
| 28 |
+
"cell_type": "code",
|
| 29 |
+
"execution_count": null,
|
| 30 |
+
"metadata": {
|
| 31 |
+
"id": "0TygyeSi2HZ1"
|
| 32 |
+
},
|
| 33 |
+
"outputs": [],
|
| 34 |
+
"source": [
|
| 35 |
+
"!pip install torch torchaudio torchvision roboflow ultralytics"
|
| 36 |
+
]
|
| 37 |
+
},
|
| 38 |
+
{
|
| 39 |
+
"cell_type": "code",
|
| 40 |
+
"execution_count": null,
|
| 41 |
+
"metadata": {
|
| 42 |
+
"colab": {
|
| 43 |
+
"base_uri": "https://localhost:8080/"
|
| 44 |
+
},
|
| 45 |
+
"id": "KlFNecLz2UBJ",
|
| 46 |
+
"outputId": "c01b326d-7c25-4fd2-e004-70ec98233eed"
|
| 47 |
+
},
|
| 48 |
+
"outputs": [
|
| 49 |
+
{
|
| 50 |
+
"name": "stdout",
|
| 51 |
+
"output_type": "stream",
|
| 52 |
+
"text": [
|
| 53 |
+
"loading Roboflow workspace...\n",
|
| 54 |
+
"loading Roboflow project...\n"
|
| 55 |
+
]
|
| 56 |
+
},
|
| 57 |
+
{
|
| 58 |
+
"name": "stderr",
|
| 59 |
+
"output_type": "stream",
|
| 60 |
+
"text": [
|
| 61 |
+
"Downloading Dataset Version Zip in TACO:-Trash-Annotations-in-Context-Dataset-15 to yolov11:: 100%|██████████| 326497/326497 [00:06<00:00, 53159.31it/s]"
|
| 62 |
+
]
|
| 63 |
+
},
|
| 64 |
+
{
|
| 65 |
+
"name": "stdout",
|
| 66 |
+
"output_type": "stream",
|
| 67 |
+
"text": [
|
| 68 |
+
"\n"
|
| 69 |
+
]
|
| 70 |
+
},
|
| 71 |
+
{
|
| 72 |
+
"name": "stderr",
|
| 73 |
+
"output_type": "stream",
|
| 74 |
+
"text": [
|
| 75 |
+
"\n",
|
| 76 |
+
"Extracting Dataset Version Zip to TACO:-Trash-Annotations-in-Context-Dataset-15 in yolov11:: 100%|██████████| 7206/7206 [00:01<00:00, 4606.91it/s]\n"
|
| 77 |
+
]
|
| 78 |
+
}
|
| 79 |
+
],
|
| 80 |
+
"source": [
|
| 81 |
+
"# Dataset import (https://universe.roboflow.com/mohamed-traore-2ekkp/taco-trash-annotations-in-context/dataset/15)\n",
|
| 82 |
+
"\n",
|
| 83 |
+
"from roboflow import Roboflow\n",
|
| 84 |
+
"rf = Roboflow(api_key=\"Enter your key\") # Enter your roboflow api key here\n",
|
| 85 |
+
"project = rf.workspace(\"mohamed-traore-2ekkp\").project(\"taco-trash-annotations-in-context\")\n",
|
| 86 |
+
"version = project.version(15)\n",
|
| 87 |
+
"dataset = version.download(\"yolov11\")"
|
| 88 |
+
]
|
| 89 |
+
},
|
| 90 |
+
{
|
| 91 |
+
"cell_type": "code",
|
| 92 |
+
"execution_count": null,
|
| 93 |
+
"metadata": {
|
| 94 |
+
"colab": {
|
| 95 |
+
"base_uri": "https://localhost:8080/"
|
| 96 |
+
},
|
| 97 |
+
"id": "MtWiembb2fWJ",
|
| 98 |
+
"outputId": "5886ffd9-d982-4fd1-ee3a-98d922990587"
|
| 99 |
+
},
|
| 100 |
+
"outputs": [
|
| 101 |
+
{
|
| 102 |
+
"name": "stdout",
|
| 103 |
+
"output_type": "stream",
|
| 104 |
+
"text": [
|
| 105 |
+
"Creating new Ultralytics Settings v0.0.6 file ✅ \n",
|
| 106 |
+
"View Ultralytics Settings with 'yolo settings' or at '/root/.config/Ultralytics/settings.json'\n",
|
| 107 |
+
"Update Settings with 'yolo settings key=value', i.e. 'yolo settings runs_dir=path/to/dir'. For help see https://docs.ultralytics.com/quickstart/#ultralytics-settings.\n"
|
| 108 |
+
]
|
| 109 |
+
}
|
| 110 |
+
],
|
| 111 |
+
"source": [
|
| 112 |
+
"from ultralytics import YOLO"
|
| 113 |
+
]
|
| 114 |
+
},
|
| 115 |
+
{
|
| 116 |
+
"cell_type": "code",
|
| 117 |
+
"execution_count": null,
|
| 118 |
+
"metadata": {
|
| 119 |
+
"id": "G829VIF32hw1"
|
| 120 |
+
},
|
| 121 |
+
"outputs": [],
|
| 122 |
+
"source": [
|
| 123 |
+
"#Training the model\n",
|
| 124 |
+
"\n",
|
| 125 |
+
"model = YOLO(\"/content/drive/MyDrive/best_heavy_59classes.pt\") # load pretrained model (YOLO11n-seg)\n",
|
| 126 |
+
"\n",
|
| 127 |
+
"# Train the model (single gpu)\n",
|
| 128 |
+
"results = model.train(data=\"/content/TACO:-Trash-Annotations-in-Context-Dataset-15/data.yaml\", epochs=50, imgsz=640)"
|
| 129 |
+
]
|
| 130 |
+
},
|
| 131 |
+
{
|
| 132 |
+
"cell_type": "markdown",
|
| 133 |
+
"metadata": {
|
| 134 |
+
"id": "iBC5snDI12PQ"
|
| 135 |
+
},
|
| 136 |
+
"source": [
|
| 137 |
+
"### Visualization ###"
|
| 138 |
+
]
|
| 139 |
+
},
|
| 140 |
+
{
|
| 141 |
+
"cell_type": "code",
|
| 142 |
+
"execution_count": null,
|
| 143 |
+
"metadata": {
|
| 144 |
+
"id": "ogkaAT740wVs"
|
| 145 |
+
},
|
| 146 |
+
"outputs": [],
|
| 147 |
+
"source": [
|
| 148 |
+
"# Waste Bin Mapping (German Mülltrennung System)\n",
|
| 149 |
+
"bin_map = {\n",
|
| 150 |
+
" \"Yellow Bin (Gelbe Tonne)\": [\n",
|
| 151 |
+
" \"Aluminium blister pack\", \"Aluminium foil\", \"Carded blister pack\", \"Clear plastic bottle\",\n",
|
| 152 |
+
" \"Disposable food container\", \"Disposable plastic cup\", \"Drink Carton\", \"Drink can\",\n",
|
| 153 |
+
" \"Foam cup\", \"Meal carton\", \"Metal lid\", \"Metal bottle cap\", \"Other plastic bottle\",\n",
|
| 154 |
+
" \"Other plastic container\", \"Other plastic cup\", \"Other plastic wrapper\", \"Plastic bottle cap\",\n",
|
| 155 |
+
" \"Plastic film\", \"Plastic glooves\", \"Plastic lid\", \"Plastic straw\", \"Polypropylene bag\",\n",
|
| 156 |
+
" \"Pop tab\", \"Single-use carrier bag\", \"Six pack rings\", \"Spread tub\", \"Squeezable tube\",\n",
|
| 157 |
+
" \"Tupperware\"\n",
|
| 158 |
+
" ],\n",
|
| 159 |
+
" \"Grey Bin (Restmüll)\": [\n",
|
| 160 |
+
" \"Cigarette\", \"Garbage bag\", \"Shoe\", \"Unlabeled litter\", \"Plastified paper bag\",\n",
|
| 161 |
+
" \"Styrofoam piece\", \"Rope & strings\", \"Foam food container\", \"Other plastic\",\n",
|
| 162 |
+
" \"Pizza box\", \"Tissues\"\n",
|
| 163 |
+
" ],\n",
|
| 164 |
+
" \"Green Bin (Biotonne)\": [\n",
|
| 165 |
+
" \"Food waste\"\n",
|
| 166 |
+
" ],\n",
|
| 167 |
+
" \"Blue Bin (Papiertonne)\": [\n",
|
| 168 |
+
" \"Egg carton\", \"Normal paper\", \"Other Carton\", \"Paper Bag\", \"Paper cup\", \"Paper straw\",\n",
|
| 169 |
+
" \"Pizza box\", \"Toilet tube\", \"Magazine paper\", \"Wrapping paper\", \"Corrugated carton\"\n",
|
| 170 |
+
" ],\n",
|
| 171 |
+
" \"Glascontainer\": [\n",
|
| 172 |
+
" \"Glass bottle\", \"Glass cup\", \"Glass jar\", \"Broken glass\"\n",
|
| 173 |
+
" ],\n",
|
| 174 |
+
" \"Hazardous Waste (Sondermüll)\": [\n",
|
| 175 |
+
" \"Battery\", \"Aerosol\", \"Scrap metal\"\n",
|
| 176 |
+
" ],\n",
|
| 177 |
+
" \"Deposit Return (Pfand)\": [\n",
|
| 178 |
+
" \"Drink can\", \"Clear plastic bottle\", \"Glass bottle\", \"Food Can\"\n",
|
| 179 |
+
" ]\n",
|
| 180 |
+
"}\n",
|
| 181 |
+
"\n",
|
| 182 |
+
"# Bin colors in BGR format (for OpenCV)\n",
|
| 183 |
+
"bin_colors = {\n",
|
| 184 |
+
" \"Yellow Bin (Gelbe Tonne)\": (0, 255, 255), # Yellow\n",
|
| 185 |
+
" \"Grey Bin (Restmüll)\": (128, 128, 128), # Gray\n",
|
| 186 |
+
" \"Green Bin (Biotonne)\": (0, 255, 0), # Green\n",
|
| 187 |
+
" \"Blue Bin (Papiertonne)\": (200, 0, 0), # Blue (bright)\n",
|
| 188 |
+
" \"Glascontainer\": (0, 0, 0), # Black\n",
|
| 189 |
+
" \"Hazardous Waste (Sondermüll)\": (0, 0, 255), # Red\n",
|
| 190 |
+
" \"Deposit Return (Pfand)\": (255, 0, 255) # Purple/Magenta\n",
|
| 191 |
+
"}\n",
|
| 192 |
+
"\n",
|
| 193 |
+
"class_to_bin = {cls: bin_type for bin_type, cls_list in bin_map.items() for cls in cls_list} #class name gives bin type\n",
|
| 194 |
+
"\n",
|
| 195 |
+
"from ultralytics import YOLO\n",
|
| 196 |
+
"import torch\n",
|
| 197 |
+
"import cv2\n",
|
| 198 |
+
"import numpy as np\n",
|
| 199 |
+
"import matplotlib.pyplot as plt\n",
|
| 200 |
+
"\n",
|
| 201 |
+
"# Load model\n",
|
| 202 |
+
"model = YOLO(\"/content/best_heavy_59classes.pt\") # enter path to your model\n",
|
| 203 |
+
"\n",
|
| 204 |
+
"# Load image\n",
|
| 205 |
+
"image_path = \"/content/IMG-20221229-WA0003_jpg.rf.fce2a8664e953ba379b83eb2e29a32cb.jpg\" # enter image path for testing\n",
|
| 206 |
+
"image = cv2.imread(image_path)\n",
|
| 207 |
+
"image = cv2.resize(image, (640, 640))\n",
|
| 208 |
+
"\n",
|
| 209 |
+
"# Run prediction\n",
|
| 210 |
+
"results = model(image_path)\n",
|
| 211 |
+
"result = results[0]\n",
|
| 212 |
+
"\n",
|
| 213 |
+
"# Get class names\n",
|
| 214 |
+
"class_names = model.names\n",
|
| 215 |
+
"\n",
|
| 216 |
+
"# Inverse mapping: class name → bin\n",
|
| 217 |
+
"class_to_bin = {cls: bin_name for bin_name, class_list in bin_map.items() for cls in class_list}\n",
|
| 218 |
+
"\n",
|
| 219 |
+
"# Get results\n",
|
| 220 |
+
"masks = result.masks.data.cpu().numpy() # [N, H, W]\n",
|
| 221 |
+
"boxes = result.boxes.xyxy.cpu().numpy() # [N, 4]\n",
|
| 222 |
+
"scores = result.boxes.conf.cpu().numpy() # [N]\n",
|
| 223 |
+
"class_ids = result.boxes.cls.cpu().numpy() # [N]\n",
|
| 224 |
+
"\n",
|
| 225 |
+
"overlay = image.copy()\n",
|
| 226 |
+
"\n",
|
| 227 |
+
"for i in range(len(class_ids)):\n",
|
| 228 |
+
" class_id = int(class_ids[i])\n",
|
| 229 |
+
" score = scores[i]\n",
|
| 230 |
+
" mask = masks[i]\n",
|
| 231 |
+
" box = boxes[i].astype(int)\n",
|
| 232 |
+
"\n",
|
| 233 |
+
" class_name = class_names[class_id]\n",
|
| 234 |
+
"\n",
|
| 235 |
+
" bin_type = next((bin_name for bin_name, items in bin_map.items() if class_name in items), \"Cannot detect trash type\")\n",
|
| 236 |
+
" color = bin_colors.get(bin_type, (255, 255, 255)) # fallback to white\n",
|
| 237 |
+
"\n",
|
| 238 |
+
" # Apply colored mask (blended)\n",
|
| 239 |
+
" mask_3c = np.stack([mask] * 3, axis=-1) # [H, W, 3]\n",
|
| 240 |
+
" color_array = np.array(color, dtype=np.uint8).reshape(1, 1, 3)\n",
|
| 241 |
+
" colored_mask = (mask_3c * color_array).astype(np.uint8)\n",
|
| 242 |
+
"\n",
|
| 243 |
+
" overlay = cv2.addWeighted(overlay, 1.0, colored_mask, 0.5, 0)\n",
|
| 244 |
+
"\n",
|
| 245 |
+
" # Draw bounding box\n",
|
| 246 |
+
" cv2.rectangle(overlay, (box[0], box[1]), (box[2], box[3]), color, 2)\n",
|
| 247 |
+
"\n",
|
| 248 |
+
" # Draw label (class name + score + bin)\n",
|
| 249 |
+
" label = f\"{class_name} ({int(score * 100)}%)\\n{bin_type}\"\n",
|
| 250 |
+
" for j, line in enumerate(label.split(\"\\n\")):\n",
|
| 251 |
+
" text_pos = (box[0], box[1] - 10 - 20 * j)\n",
|
| 252 |
+
" cv2.putText(overlay, line, text_pos, cv2.FONT_HERSHEY_SIMPLEX, 0.5, color, 2, cv2.LINE_AA)\n",
|
| 253 |
+
"\n",
|
| 254 |
+
"# Show the image\n",
|
| 255 |
+
"plt.figure(figsize=(14, 10))\n",
|
| 256 |
+
"plt.imshow(cv2.cvtColor(overlay, cv2.COLOR_BGR2RGB))\n",
|
| 257 |
+
"plt.axis(\"off\")\n",
|
| 258 |
+
"plt.title(\"YOLOv11 Mülltrennung Classification Overlay\")\n",
|
| 259 |
+
"plt.show()"
|
| 260 |
+
]
|
| 261 |
+
}
|
| 262 |
+
],
|
| 263 |
+
"metadata": {
|
| 264 |
+
"accelerator": "GPU",
|
| 265 |
+
"colab": {
|
| 266 |
+
"gpuType": "T4",
|
| 267 |
+
"provenance": []
|
| 268 |
+
},
|
| 269 |
+
"kernelspec": {
|
| 270 |
+
"display_name": "Python 3",
|
| 271 |
+
"name": "python3"
|
| 272 |
+
},
|
| 273 |
+
"language_info": {
|
| 274 |
+
"name": "python"
|
| 275 |
+
}
|
| 276 |
+
},
|
| 277 |
+
"nbformat": 4,
|
| 278 |
+
"nbformat_minor": 0
|
| 279 |
+
}
|
src/process/process.py
CHANGED
|
@@ -11,7 +11,7 @@ FILENAME = "best_0.1.0.pt"
|
|
| 11 |
bin_map = {
|
| 12 |
"Yellow Bin (Gelbe Tonne)": [
|
| 13 |
"Aluminium blister pack", "Aluminium foil", "Carded blister pack", "Clear plastic bottle",
|
| 14 |
-
"Disposable food container", "Disposable plastic cup", "Drink
|
| 15 |
"Foam cup", "Meal carton", "Metal lid", "Metal bottle cap", "Other plastic bottle",
|
| 16 |
"Other plastic container", "Other plastic cup", "Other plastic wrapper", "Plastic bottle cap",
|
| 17 |
"Plastic film", "Plastic glooves", "Plastic lid", "Plastic straw", "Polypropylene bag",
|
|
|
|
| 11 |
bin_map = {
|
| 12 |
"Yellow Bin (Gelbe Tonne)": [
|
| 13 |
"Aluminium blister pack", "Aluminium foil", "Carded blister pack", "Clear plastic bottle",
|
| 14 |
+
"Disposable food container", "Disposable plastic cup", "Drink carton",
|
| 15 |
"Foam cup", "Meal carton", "Metal lid", "Metal bottle cap", "Other plastic bottle",
|
| 16 |
"Other plastic container", "Other plastic cup", "Other plastic wrapper", "Plastic bottle cap",
|
| 17 |
"Plastic film", "Plastic glooves", "Plastic lid", "Plastic straw", "Polypropylene bag",
|