Spaces:
Sleeping
Sleeping
Commit
·
20bd21b
1
Parent(s):
a82751a
init
Browse files- app.py +80 -0
- model_- 11 october 2024 11_07.pt +3 -0
- requirements.txt +3 -0
app.py
ADDED
@@ -0,0 +1,80 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Created by yarramsettinaresh GORAKA DIGITAL PRIVATE LIMITED at 24/10/24
|
2 |
+
import gradio as gr
|
3 |
+
import cv2
|
4 |
+
import time
|
5 |
+
from ultralytics import YOLO
|
6 |
+
|
7 |
+
# Load your YOLO model (adjust model path or type as needed)
|
8 |
+
model_path = "/Users/yarramsettinaresh/Downloads/model_- 11 october 2024 11_07.pt"
|
9 |
+
model = YOLO(model_path)
|
10 |
+
|
11 |
+
|
12 |
+
def ultralytics_predict(model, frame):
|
13 |
+
confidence_threshold = 0.2
|
14 |
+
start_time = time.time()
|
15 |
+
results = model(frame) # Perform inference on the frame
|
16 |
+
end_time = time.time()
|
17 |
+
|
18 |
+
duration = end_time - start_time
|
19 |
+
print(f"Prediction duration: {duration:.4f} seconds")
|
20 |
+
duration_str = f"{duration:.4f} S"
|
21 |
+
|
22 |
+
object_count = {} # Dictionary to store counts of detected objects
|
23 |
+
|
24 |
+
for detection in results[0].boxes: # Iterate through detections
|
25 |
+
conf = float(detection.conf[0]) # Confidence score
|
26 |
+
if conf > confidence_threshold:
|
27 |
+
conf, pos, text, color = ultralytics(detection, duration_str)
|
28 |
+
cv2.rectangle(frame, pos[0], pos[1], color, 2)
|
29 |
+
cv2.putText(frame, text, (pos[0][0], pos[0][1] - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, color, 2)
|
30 |
+
|
31 |
+
# Update object count
|
32 |
+
class_id = int(detection.cls[0])
|
33 |
+
class_name = model.names[class_id]
|
34 |
+
object_count[class_name] = object_count.get(class_name, 0) + 1
|
35 |
+
|
36 |
+
return object_count # Return the count of detected objects
|
37 |
+
|
38 |
+
|
39 |
+
def ultralytics(detection, duration):
|
40 |
+
COLOUR_MAP = {
|
41 |
+
0: (0, 0, 255), # Red in BGR format
|
42 |
+
1: (0, 255, 0) # Green in BGR format
|
43 |
+
}
|
44 |
+
|
45 |
+
conf = float(detection.conf[0]) # Confidence score
|
46 |
+
class_id = int(detection.cls[0]) # Class ID
|
47 |
+
name = model.names[class_id] # Get class name
|
48 |
+
xmin, ymin, xmax, ymax = map(int, detection.xyxy[0]) # Bounding box coordinates
|
49 |
+
color = COLOUR_MAP.get(class_id, (255, 255, 255)) # Default to white if not found
|
50 |
+
|
51 |
+
# Draw bounding box and label on the frame
|
52 |
+
pos = (xmin, ymin), (xmax, ymax)
|
53 |
+
text = f"{name} {round(conf, 2)} :{duration}"
|
54 |
+
|
55 |
+
return conf, pos, text, color
|
56 |
+
|
57 |
+
|
58 |
+
def process_frame(frame):
|
59 |
+
object_count = ultralytics_predict(model, frame)
|
60 |
+
return frame, object_count # Return frame and object count
|
61 |
+
|
62 |
+
|
63 |
+
def detect_image(image):
|
64 |
+
image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR) # Convert to BGR format for OpenCV
|
65 |
+
result_frame, object_count = process_frame(image)
|
66 |
+
result_frame = cv2.cvtColor(result_frame, cv2.COLOR_BGR2RGB) # Convert back to RGB for Gradio
|
67 |
+
return result_frame, object_count # Return both the frame and the count
|
68 |
+
|
69 |
+
|
70 |
+
# Create Gradio Interface
|
71 |
+
gr.Interface(
|
72 |
+
fn=detect_image,
|
73 |
+
inputs=gr.Image(type="numpy"), # Updated input format
|
74 |
+
outputs=[
|
75 |
+
gr.Image(type="numpy"), # Image output
|
76 |
+
gr.JSON(), # Object count output as JSON
|
77 |
+
],
|
78 |
+
title="YOLO Object Detection",
|
79 |
+
description="Upload an image to detect objects using YOLO model."
|
80 |
+
).launch()
|
model_- 11 october 2024 11_07.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e4f23f88664dbf1177b44c2c989c627da63d8c27ba3db4456da86f26271e7a44
|
3 |
+
size 5480979
|
requirements.txt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
gradio
|
2 |
+
opencv-python
|
3 |
+
ultralytics
|