Spaces:
Running
on
Zero
Running
on
Zero
Yardenfren
commited on
Commit
•
ddea0a0
1
Parent(s):
d1ca433
Upload 3 files
Browse files- app_inference.py +240 -0
- blora_utils.py +46 -0
- inf.py +121 -0
app_inference.py
ADDED
@@ -0,0 +1,240 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
|
3 |
+
from __future__ import annotations
|
4 |
+
|
5 |
+
import os
|
6 |
+
import random
|
7 |
+
from typing import Tuple, Optional
|
8 |
+
|
9 |
+
import gradio as gr
|
10 |
+
from huggingface_hub import HfApi
|
11 |
+
|
12 |
+
from inf import InferencePipeline
|
13 |
+
|
14 |
+
SAMPLE_MODEL_IDS = [
|
15 |
+
'lora-library/B-LoRA-teddybear',
|
16 |
+
'lora-library/B-LoRA-bull',
|
17 |
+
'lora-library/B-LoRA-wolf_plushie',
|
18 |
+
'lora-library/B-LoRA-pen_sketch',
|
19 |
+
'lora-library/B-LoRA-cartoon_line',
|
20 |
+
'lora-library/B-LoRA-multi-dog2',
|
21 |
+
]
|
22 |
+
css = """
|
23 |
+
body {
|
24 |
+
font-size: 30px;
|
25 |
+
}
|
26 |
+
.gr-image {
|
27 |
+
width: 512px;
|
28 |
+
height: 512px;
|
29 |
+
object-fit: contain;
|
30 |
+
margin: auto;
|
31 |
+
}
|
32 |
+
|
33 |
+
.lora-column {
|
34 |
+
display: flex;
|
35 |
+
flex-direction: column;
|
36 |
+
align-items: center; /* Center align content vertically in columns */
|
37 |
+
justify-content: center; /* Center content horizontally in columns */
|
38 |
+
}
|
39 |
+
.gr-row {
|
40 |
+
align-items: center;
|
41 |
+
justify-content: center;
|
42 |
+
margin-top: 5px;
|
43 |
+
}
|
44 |
+
"""
|
45 |
+
|
46 |
+
|
47 |
+
def get_choices(hf_token):
|
48 |
+
api = HfApi(token=hf_token)
|
49 |
+
choices = [
|
50 |
+
info.modelId for info in api.list_models(author='lora-library')
|
51 |
+
]
|
52 |
+
models_list = ['None'] + SAMPLE_MODEL_IDS + choices
|
53 |
+
return models_list
|
54 |
+
|
55 |
+
|
56 |
+
def get_image_from_card(card, model_id) -> Optional[str]:
|
57 |
+
try:
|
58 |
+
card_path = f"https://huggingface.co/{model_id}/resolve/main/"
|
59 |
+
widget = card.data.get('widget')
|
60 |
+
if widget is not None or len(widget) > 0:
|
61 |
+
output = widget[0].get('output')
|
62 |
+
if output is not None:
|
63 |
+
url = output.get('url')
|
64 |
+
if url is not None:
|
65 |
+
return card_path + url
|
66 |
+
return None
|
67 |
+
except Exception:
|
68 |
+
return None
|
69 |
+
|
70 |
+
|
71 |
+
def demo_init():
|
72 |
+
try:
|
73 |
+
choices = get_choices(app.hf_token)
|
74 |
+
content_blora = random.choice(SAMPLE_MODEL_IDS)
|
75 |
+
style_blora = random.choice(SAMPLE_MODEL_IDS)
|
76 |
+
content_blora_prompt, content_blora_image = app.load_model_info(content_blora)
|
77 |
+
style_blora_prompt, style_blora_image = app.load_model_info(style_blora)
|
78 |
+
|
79 |
+
content_lora_model_id = gr.update(choices=choices, value=content_blora)
|
80 |
+
content_prompt = gr.update(value=content_blora_prompt)
|
81 |
+
content_image = gr.update(value=content_blora_image)
|
82 |
+
|
83 |
+
style_lora_model_id = gr.update(choices=choices, value=style_blora)
|
84 |
+
style_prompt = gr.update(value=style_blora_prompt)
|
85 |
+
style_image = gr.update(value=style_blora_image)
|
86 |
+
|
87 |
+
prompt = gr.update(
|
88 |
+
value=f'{content_blora_prompt} in {style_blora_prompt[0].lower() + style_blora_prompt[1:]} style')
|
89 |
+
|
90 |
+
return content_lora_model_id, content_prompt, content_image, style_lora_model_id, style_prompt, style_image, prompt
|
91 |
+
|
92 |
+
except Exception as e:
|
93 |
+
raise type(e)(f'failed to demo_init, due to: {e}')
|
94 |
+
|
95 |
+
|
96 |
+
def toggle_column(is_checked):
|
97 |
+
try:
|
98 |
+
return 'None' if is_checked else random.choice(SAMPLE_MODEL_IDS)
|
99 |
+
except Exception as e:
|
100 |
+
raise type(e)(f'failed to toggle_column, due to: {e}')
|
101 |
+
|
102 |
+
|
103 |
+
class InferenceUtil:
|
104 |
+
def __init__(self, hf_token: str | None):
|
105 |
+
self.hf_token = hf_token
|
106 |
+
|
107 |
+
def load_model_info(self, lora_model_id: str) -> Tuple[str, Optional[str]]:
|
108 |
+
try:
|
109 |
+
try:
|
110 |
+
card = InferencePipeline.get_model_card(lora_model_id,
|
111 |
+
self.hf_token)
|
112 |
+
except Exception:
|
113 |
+
return '', None
|
114 |
+
instance_prompt = getattr(card.data, 'instance_prompt', '')
|
115 |
+
image_url = get_image_from_card(card, lora_model_id)
|
116 |
+
return instance_prompt, image_url
|
117 |
+
except Exception as e:
|
118 |
+
raise type(e)(f'failed to load_model_info, due to: {e}')
|
119 |
+
|
120 |
+
def update_model_info(self, model_source: str):
|
121 |
+
try:
|
122 |
+
if model_source == 'None':
|
123 |
+
return '', None
|
124 |
+
else:
|
125 |
+
model_info = self.load_model_info(model_source)
|
126 |
+
new_prompt, new_image = model_info[0], model_info[1]
|
127 |
+
return new_prompt, new_image
|
128 |
+
except Exception as e:
|
129 |
+
raise type(e)(f'failed to update_model_info, due to: {e}')
|
130 |
+
|
131 |
+
|
132 |
+
def create_inference_demo(pipe, #: InferencePipeline,
|
133 |
+
hf_token: str | None = None) -> gr.Blocks:
|
134 |
+
with gr.Blocks(css=css) as demo:
|
135 |
+
with gr.Row(elem_classes="gr-row"):
|
136 |
+
with gr.Column():
|
137 |
+
with gr.Group(elem_classes="lora-column"):
|
138 |
+
gr.Markdown('## Content B-LoRA')
|
139 |
+
content_checkbox = gr.Checkbox(label='Use Content Only', value=False)
|
140 |
+
content_lora_model_id = gr.Dropdown(label='Model ID', choices=[])
|
141 |
+
content_prompt = gr.Text(label='Content instance prompt', interactive=False, max_lines=1)
|
142 |
+
content_image = gr.Image(label='Content Image', elem_classes="gr-image")
|
143 |
+
with gr.Column():
|
144 |
+
with gr.Group(elem_classes="lora-column"):
|
145 |
+
gr.Markdown('## Style B-LoRA')
|
146 |
+
style_checkbox = gr.Checkbox(label='Use Style Only', value=False)
|
147 |
+
style_lora_model_id = gr.Dropdown(label='Model ID', choices=[])
|
148 |
+
style_prompt = gr.Text(label='Style instance prompt', interactive=False, max_lines=1)
|
149 |
+
style_image = gr.Image(label='Style Image', elem_classes="gr-image")
|
150 |
+
with gr.Row(elem_classes="gr-row"):
|
151 |
+
with gr.Column():
|
152 |
+
with gr.Group():
|
153 |
+
prompt = gr.Textbox(
|
154 |
+
label='Prompt',
|
155 |
+
max_lines=1,
|
156 |
+
placeholder='Example: "A [c] in [s] style"'
|
157 |
+
)
|
158 |
+
result = gr.Image(label='Result')
|
159 |
+
with gr.Accordion('Other Parameters', open=False, elem_classes="gr-accordion"):
|
160 |
+
content_alpha = gr.Slider(label='Content B-LoRA alpha',
|
161 |
+
minimum=0,
|
162 |
+
maximum=2,
|
163 |
+
step=0.05,
|
164 |
+
value=1)
|
165 |
+
style_alpha = gr.Slider(label='Style B-LoRA alpha',
|
166 |
+
minimum=0,
|
167 |
+
maximum=2,
|
168 |
+
step=0.05,
|
169 |
+
value=1)
|
170 |
+
seed = gr.Slider(label='Seed',
|
171 |
+
minimum=0,
|
172 |
+
maximum=100000,
|
173 |
+
step=1,
|
174 |
+
value=8888)
|
175 |
+
num_steps = gr.Slider(label='Number of Steps',
|
176 |
+
minimum=0,
|
177 |
+
maximum=100,
|
178 |
+
step=1,
|
179 |
+
value=50)
|
180 |
+
guidance_scale = gr.Slider(label='CFG Scale',
|
181 |
+
minimum=0,
|
182 |
+
maximum=50,
|
183 |
+
step=0.1,
|
184 |
+
value=7.5)
|
185 |
+
|
186 |
+
run_button = gr.Button('Generate')
|
187 |
+
demo.load(demo_init, inputs=[],
|
188 |
+
outputs=[content_lora_model_id, content_prompt, content_image, style_lora_model_id, style_prompt,
|
189 |
+
style_image, prompt], queue=False, show_progress="hidden")
|
190 |
+
content_lora_model_id.change(
|
191 |
+
fn=app.update_model_info,
|
192 |
+
inputs=content_lora_model_id,
|
193 |
+
outputs=[
|
194 |
+
content_prompt,
|
195 |
+
content_image,
|
196 |
+
])
|
197 |
+
style_lora_model_id.change(
|
198 |
+
fn=app.update_model_info,
|
199 |
+
inputs=style_lora_model_id,
|
200 |
+
outputs=[
|
201 |
+
style_prompt,
|
202 |
+
style_image,
|
203 |
+
])
|
204 |
+
style_prompt.change(
|
205 |
+
fn=lambda content_blora_prompt,
|
206 |
+
style_blora_prompt: f'{content_blora_prompt} in {style_blora_prompt[0].lower() + style_blora_prompt[1:]} style' if style_blora_prompt else content_blora_prompt,
|
207 |
+
inputs=[content_prompt, style_prompt],
|
208 |
+
outputs=prompt,
|
209 |
+
)
|
210 |
+
content_prompt.change(
|
211 |
+
fn=lambda content_blora_prompt,
|
212 |
+
style_blora_prompt: f'{content_blora_prompt} in {style_blora_prompt[0].lower() + style_blora_prompt[1:]} style' if content_blora_prompt else style_blora_prompt,
|
213 |
+
inputs=[content_prompt, style_prompt],
|
214 |
+
outputs=prompt,
|
215 |
+
)
|
216 |
+
content_checkbox.change(toggle_column, inputs=[content_checkbox],
|
217 |
+
outputs=[style_lora_model_id])
|
218 |
+
style_checkbox.change(toggle_column, inputs=[style_checkbox],
|
219 |
+
outputs=[content_lora_model_id])
|
220 |
+
inputs = [
|
221 |
+
content_lora_model_id,
|
222 |
+
style_lora_model_id,
|
223 |
+
prompt,
|
224 |
+
content_alpha,
|
225 |
+
style_alpha,
|
226 |
+
seed,
|
227 |
+
num_steps,
|
228 |
+
guidance_scale,
|
229 |
+
]
|
230 |
+
prompt.submit(fn=pipe.run, inputs=inputs, outputs=result)
|
231 |
+
run_button.click(fn=pipe.run, inputs=inputs, outputs=result)
|
232 |
+
return demo
|
233 |
+
|
234 |
+
|
235 |
+
if __name__ == '__main__':
|
236 |
+
hf_token = os.getenv('HF_TOKEN')
|
237 |
+
pipe = InferencePipeline(hf_token)
|
238 |
+
app = InferenceUtil(hf_token)
|
239 |
+
demo = create_inference_demo(pipe, hf_token)
|
240 |
+
demo.queue(max_size=10).launch(share=False)
|
blora_utils.py
ADDED
@@ -0,0 +1,46 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Optional
|
2 |
+
|
3 |
+
BLOCKS = {
|
4 |
+
'content': ['unet.up_blocks.0.attentions.0'],
|
5 |
+
'style': ['unet.up_blocks.0.attentions.1'],
|
6 |
+
}
|
7 |
+
|
8 |
+
|
9 |
+
def is_belong_to_blocks(key, blocks):
|
10 |
+
try:
|
11 |
+
for g in blocks:
|
12 |
+
if g in key:
|
13 |
+
return True
|
14 |
+
return False
|
15 |
+
except Exception as e:
|
16 |
+
raise type(e)(f'failed to is_belong_to_block, due to: {e}')
|
17 |
+
|
18 |
+
|
19 |
+
def filter_lora(state_dict, blocks_):
|
20 |
+
try:
|
21 |
+
return {k: v for k, v in state_dict.items() if is_belong_to_blocks(k, blocks_)}
|
22 |
+
except Exception as e:
|
23 |
+
raise type(e)(f'failed to filter_lora, due to: {e}')
|
24 |
+
|
25 |
+
|
26 |
+
def scale_lora(state_dict, alpha):
|
27 |
+
try:
|
28 |
+
return {k: v * alpha for k, v in state_dict.items()}
|
29 |
+
except Exception as e:
|
30 |
+
raise type(e)(f'failed to scale_lora, due to: {e}')
|
31 |
+
|
32 |
+
|
33 |
+
def get_target_modules(unet, blocks=None):
|
34 |
+
try:
|
35 |
+
if not blocks:
|
36 |
+
blocks = [('.').join(blk.split('.')[1:]) for blk in BLOCKS['content'] + BLOCKS['style']]
|
37 |
+
|
38 |
+
attns = [attn_processor_name.rsplit('.', 1)[0] for attn_processor_name, _ in unet.attn_processors.items() if
|
39 |
+
is_belong_to_blocks(attn_processor_name, blocks)]
|
40 |
+
|
41 |
+
target_modules = [f'{attn}.{mat}' for mat in ["to_k", "to_q", "to_v", "to_out.0"] for attn in attns]
|
42 |
+
return target_modules
|
43 |
+
except Exception as e:
|
44 |
+
raise type(e)(f'failed to get_target_modules, due to: {e}')
|
45 |
+
|
46 |
+
|
inf.py
ADDED
@@ -0,0 +1,121 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from __future__ import annotations
|
2 |
+
|
3 |
+
import gc
|
4 |
+
import pathlib
|
5 |
+
|
6 |
+
import gradio as gr
|
7 |
+
import PIL.Image
|
8 |
+
import torch
|
9 |
+
from diffusers import StableDiffusionXLPipeline
|
10 |
+
from huggingface_hub import ModelCard
|
11 |
+
|
12 |
+
from blora_utils import BLOCKS, filter_lora, scale_lora
|
13 |
+
|
14 |
+
|
15 |
+
class InferencePipeline:
|
16 |
+
def __init__(self, hf_token: str | None = None):
|
17 |
+
self.hf_token = hf_token
|
18 |
+
self.base_model_id = "stabilityai/stable-diffusion-xl-base-1.0"
|
19 |
+
self.device = torch.device(
|
20 |
+
'cuda:0' if torch.cuda.is_available() else 'cpu')
|
21 |
+
if self.device.type == 'cpu':
|
22 |
+
self.pipe = StableDiffusionXLPipeline.from_pretrained(
|
23 |
+
self.base_model_id, use_auth_token=self.hf_token, cache_dir='./cache')
|
24 |
+
else:
|
25 |
+
self.pipe = StableDiffusionXLPipeline.from_pretrained(
|
26 |
+
self.base_model_id,
|
27 |
+
torch_dtype=torch.float16,
|
28 |
+
use_auth_token=self.hf_token)
|
29 |
+
self.pipe = self.pipe.to(self.device)
|
30 |
+
self.content_lora_model_id = None
|
31 |
+
self.style_lora_model_id = None
|
32 |
+
|
33 |
+
def clear(self) -> None:
|
34 |
+
self.content_lora_model_id = None
|
35 |
+
self.style_lora_model_id = None
|
36 |
+
del self.pipe
|
37 |
+
self.pipe = None
|
38 |
+
torch.cuda.empty_cache()
|
39 |
+
gc.collect()
|
40 |
+
|
41 |
+
def load_b_lora_to_unet(self, content_lora_model_id: str, style_lora_model_id: str, content_alpha: float,
|
42 |
+
style_alpha: float) -> None:
|
43 |
+
try:
|
44 |
+
# Get Content B-LoRA SD
|
45 |
+
if content_lora_model_id:
|
46 |
+
content_B_LoRA_sd, _ = self.pipe.lora_state_dict(content_lora_model_id, use_auth_token=self.hf_token)
|
47 |
+
content_B_LoRA = filter_lora(content_B_LoRA_sd, BLOCKS['content'])
|
48 |
+
content_B_LoRA = scale_lora(content_B_LoRA, content_alpha)
|
49 |
+
else:
|
50 |
+
content_B_LoRA = {}
|
51 |
+
|
52 |
+
# Get Style B-LoRA SD
|
53 |
+
if style_lora_model_id:
|
54 |
+
style_B_LoRA_sd, _ = self.pipe.lora_state_dict(style_lora_model_id, use_auth_token=self.hf_token)
|
55 |
+
style_B_LoRA = filter_lora(style_B_LoRA_sd, BLOCKS['style'])
|
56 |
+
style_B_LoRA = scale_lora(style_B_LoRA, style_alpha)
|
57 |
+
else:
|
58 |
+
style_B_LoRA = {}
|
59 |
+
|
60 |
+
# Merge B-LoRAs SD
|
61 |
+
res_lora = {**content_B_LoRA, **style_B_LoRA}
|
62 |
+
|
63 |
+
# Load
|
64 |
+
self.pipe.load_lora_into_unet(res_lora, None, self.pipe.unet)
|
65 |
+
except Exception as e:
|
66 |
+
raise type(e)(f'failed to load_b_lora_to_unet, due to: {e}')
|
67 |
+
|
68 |
+
@staticmethod
|
69 |
+
def check_if_model_is_local(lora_model_id: str) -> bool:
|
70 |
+
return pathlib.Path(lora_model_id).exists()
|
71 |
+
|
72 |
+
@staticmethod
|
73 |
+
def get_model_card(model_id: str,
|
74 |
+
hf_token: str | None = None) -> ModelCard:
|
75 |
+
if InferencePipeline.check_if_model_is_local(model_id):
|
76 |
+
card_path = (pathlib.Path(model_id) / 'README.md').as_posix()
|
77 |
+
else:
|
78 |
+
card_path = model_id
|
79 |
+
return ModelCard.load(card_path, token=hf_token)
|
80 |
+
|
81 |
+
@staticmethod
|
82 |
+
def get_base_model_info(lora_model_id: str,
|
83 |
+
hf_token: str | None = None) -> str:
|
84 |
+
card = InferencePipeline.get_model_card(lora_model_id, hf_token)
|
85 |
+
return card.data.base_model
|
86 |
+
|
87 |
+
def load_pipe(self, content_lora_model_id: str, style_lora_model_id: str, content_alpha: float,
|
88 |
+
style_alpha: float) -> None:
|
89 |
+
if content_lora_model_id == self.content_lora_model_id and style_lora_model_id == self.style_lora_model_id:
|
90 |
+
return
|
91 |
+
self.pipe.unload_lora_weights()
|
92 |
+
|
93 |
+
self.load_b_lora_to_unet(content_lora_model_id, style_lora_model_id, content_alpha, style_alpha)
|
94 |
+
|
95 |
+
self.content_lora_model_id = content_lora_model_id
|
96 |
+
self.style_lora_model_id = style_lora_model_id
|
97 |
+
|
98 |
+
def run(
|
99 |
+
self,
|
100 |
+
content_lora_model_id: str,
|
101 |
+
style_lora_model_id: str,
|
102 |
+
prompt: str,
|
103 |
+
content_alpha: float,
|
104 |
+
style_alpha: float,
|
105 |
+
seed: int,
|
106 |
+
n_steps: int,
|
107 |
+
guidance_scale: float,
|
108 |
+
) -> PIL.Image.Image:
|
109 |
+
if not torch.cuda.is_available():
|
110 |
+
raise gr.Error('CUDA is not available.')
|
111 |
+
|
112 |
+
self.load_pipe(content_lora_model_id, style_lora_model_id, content_alpha, style_alpha)
|
113 |
+
|
114 |
+
generator = torch.Generator(device=self.device).manual_seed(seed)
|
115 |
+
out = self.pipe(
|
116 |
+
prompt,
|
117 |
+
num_inference_steps=n_steps,
|
118 |
+
guidance_scale=guidance_scale,
|
119 |
+
generator=generator,
|
120 |
+
) # type: ignore
|
121 |
+
return out.images[0]
|