Spaces:
Running
Running
support for both streaming and non streaming
Browse files- Dockerfile +1 -1
- api.py +30 -3
- llm_backend.py +26 -9
- schema.py +1 -0
Dockerfile
CHANGED
@@ -8,4 +8,4 @@ RUN pip install --no-cache-dir --upgrade -r /requirements.txt
|
|
8 |
|
9 |
RUN useradd -m -u 1000 user
|
10 |
|
11 |
-
CMD ["
|
|
|
8 |
|
9 |
RUN useradd -m -u 1000 user
|
10 |
|
11 |
+
CMD ["uvicorn", "api:app", "--host", "0.0.0.0", "--port", "7860"]
|
api.py
CHANGED
@@ -1,8 +1,8 @@
|
|
1 |
-
from fastapi.responses import StreamingResponse
|
2 |
from fastapi import FastAPI, HTTPException
|
3 |
import logging
|
4 |
|
5 |
-
from llm_backend import chat_with_model
|
6 |
from schema import ChatRequest
|
7 |
|
8 |
"""
|
@@ -26,6 +26,7 @@ def chat_stream(request: ChatRequest):
|
|
26 |
kwargs = {
|
27 |
"max_tokens": request.max_tokens,
|
28 |
"temperature": request.temperature,
|
|
|
29 |
"top_p": request.top_p,
|
30 |
"min_p": request.min_p,
|
31 |
"typical_p": request.typical_p,
|
@@ -40,7 +41,33 @@ def chat_stream(request: ChatRequest):
|
|
40 |
"mirostat_eta": request.mirostat_eta,
|
41 |
}
|
42 |
try:
|
43 |
-
token_generator =
|
44 |
return StreamingResponse(token_generator, media_type="text/plain")
|
45 |
except Exception as e:
|
46 |
raise HTTPException(status_code=500, detail=str(e))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from fastapi.responses import StreamingResponse, HTMLResponse
|
2 |
from fastapi import FastAPI, HTTPException
|
3 |
import logging
|
4 |
|
5 |
+
from llm_backend import chat_with_model, stream_with_model
|
6 |
from schema import ChatRequest
|
7 |
|
8 |
"""
|
|
|
26 |
kwargs = {
|
27 |
"max_tokens": request.max_tokens,
|
28 |
"temperature": request.temperature,
|
29 |
+
"stream": True,
|
30 |
"top_p": request.top_p,
|
31 |
"min_p": request.min_p,
|
32 |
"typical_p": request.typical_p,
|
|
|
41 |
"mirostat_eta": request.mirostat_eta,
|
42 |
}
|
43 |
try:
|
44 |
+
token_generator = stream_with_model(request.chat_history, request.model, kwargs)
|
45 |
return StreamingResponse(token_generator, media_type="text/plain")
|
46 |
except Exception as e:
|
47 |
raise HTTPException(status_code=500, detail=str(e))
|
48 |
+
|
49 |
+
|
50 |
+
@app.post("/chat")
|
51 |
+
def chat(request: ChatRequest):
|
52 |
+
kwargs = {
|
53 |
+
"max_tokens": request.max_tokens,
|
54 |
+
"temperature": request.temperature,
|
55 |
+
"stream": False,
|
56 |
+
"top_p": request.top_p,
|
57 |
+
"min_p": request.min_p,
|
58 |
+
"typical_p": request.typical_p,
|
59 |
+
"frequency_penalty": request.frequency_penalty,
|
60 |
+
"presence_penalty": request.presence_penalty,
|
61 |
+
"repeat_penalty": request.repeat_penalty,
|
62 |
+
"top_k": request.top_k,
|
63 |
+
"seed": request.seed,
|
64 |
+
"tfs_z": request.tfs_z,
|
65 |
+
"mirostat_mode": request.mirostat_mode,
|
66 |
+
"mirostat_tau": request.mirostat_tau,
|
67 |
+
"mirostat_eta": request.mirostat_eta,
|
68 |
+
}
|
69 |
+
try:
|
70 |
+
output = chat_with_model(request.chat_history, request.model, kwargs)
|
71 |
+
return HTMLResponse(output, media_type="text/plain")
|
72 |
+
except Exception as e:
|
73 |
+
raise HTTPException(status_code=500, detail=str(e))
|
llm_backend.py
CHANGED
@@ -19,8 +19,7 @@ def get_llm(model_name):
|
|
19 |
|
20 |
def format_chat(chat_history: list[Message]):
|
21 |
"""
|
22 |
-
Formats chat history and user input into a single string
|
23 |
-
suitable for the model.
|
24 |
"""
|
25 |
messages = []
|
26 |
for msg in chat_history:
|
@@ -29,13 +28,16 @@ def format_chat(chat_history: list[Message]):
|
|
29 |
return "\n".join(messages) + "\nAssistant:"
|
30 |
|
31 |
|
32 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
prompt = format_chat(chat_history)
|
34 |
|
35 |
-
|
36 |
-
max_tokens=2048,
|
37 |
-
top_k=1,
|
38 |
-
)
|
39 |
|
40 |
forced_kwargs = dict(
|
41 |
stop=["\nUser:", "\nAssistant:", "</s>"],
|
@@ -43,8 +45,6 @@ def chat_with_model(chat_history, model, kwargs: dict):
|
|
43 |
stream=True,
|
44 |
)
|
45 |
|
46 |
-
llm = get_llm(model)
|
47 |
-
|
48 |
input_kwargs = {**default_kwargs, **kwargs, **forced_kwargs}
|
49 |
response = llm.__call__(prompt, **input_kwargs)
|
50 |
|
@@ -52,6 +52,23 @@ def chat_with_model(chat_history, model, kwargs: dict):
|
|
52 |
yield token["choices"][0]["text"]
|
53 |
|
54 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
55 |
# %% example input
|
56 |
# kwargs = dict(
|
57 |
# temperature=1,
|
|
|
19 |
|
20 |
def format_chat(chat_history: list[Message]):
|
21 |
"""
|
22 |
+
Formats chat history and user input into a single string suitable for the model.
|
|
|
23 |
"""
|
24 |
messages = []
|
25 |
for msg in chat_history:
|
|
|
28 |
return "\n".join(messages) + "\nAssistant:"
|
29 |
|
30 |
|
31 |
+
default_kwargs = dict(
|
32 |
+
max_tokens=2048,
|
33 |
+
top_k=1,
|
34 |
+
)
|
35 |
+
|
36 |
+
|
37 |
+
def stream_with_model(chat_history, model, kwargs: dict):
|
38 |
prompt = format_chat(chat_history)
|
39 |
|
40 |
+
llm = get_llm(model)
|
|
|
|
|
|
|
41 |
|
42 |
forced_kwargs = dict(
|
43 |
stop=["\nUser:", "\nAssistant:", "</s>"],
|
|
|
45 |
stream=True,
|
46 |
)
|
47 |
|
|
|
|
|
48 |
input_kwargs = {**default_kwargs, **kwargs, **forced_kwargs}
|
49 |
response = llm.__call__(prompt, **input_kwargs)
|
50 |
|
|
|
52 |
yield token["choices"][0]["text"]
|
53 |
|
54 |
|
55 |
+
def chat_with_model(chat_history, model, kwargs: dict):
|
56 |
+
prompt = format_chat(chat_history)
|
57 |
+
|
58 |
+
llm = get_llm(model)
|
59 |
+
|
60 |
+
forced_kwargs = dict(
|
61 |
+
stop=["\nUser:", "\nAssistant:", "</s>"],
|
62 |
+
echo=False,
|
63 |
+
stream=False,
|
64 |
+
)
|
65 |
+
|
66 |
+
input_kwargs = {**default_kwargs, **kwargs, **forced_kwargs}
|
67 |
+
response = llm.__call__(prompt, **input_kwargs)
|
68 |
+
|
69 |
+
return response["choices"][0]["text"]
|
70 |
+
|
71 |
+
|
72 |
# %% example input
|
73 |
# kwargs = dict(
|
74 |
# temperature=1,
|
schema.py
CHANGED
@@ -37,6 +37,7 @@ class Message(BaseModel):
|
|
37 |
class ChatRequest(BaseModel):
|
38 |
chat_history: List[Message]
|
39 |
model: Literal["llama3.2", "falcon-mamba", "mistral-nemo"] = "llama3.2"
|
|
|
40 |
max_tokens: Optional[int] = 65536
|
41 |
temperature: float = 0.8
|
42 |
top_p: float = 0.95
|
|
|
37 |
class ChatRequest(BaseModel):
|
38 |
chat_history: List[Message]
|
39 |
model: Literal["llama3.2", "falcon-mamba", "mistral-nemo"] = "llama3.2"
|
40 |
+
stream: bool = False
|
41 |
max_tokens: Optional[int] = 65536
|
42 |
temperature: float = 0.8
|
43 |
top_p: float = 0.95
|