YouLiXiya commited on
Commit
d0503eb
1 Parent(s): 26c3b64

Update mobile-sam.py

Browse files
Files changed (1) hide show
  1. mobile-sam.py +163 -2
mobile-sam.py CHANGED
@@ -1,3 +1,164 @@
1
  import os
2
- os.system('pip install groundingdino-yl')
3
- os.system('python app.py')
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  import os
2
+ #os.system('cd GroundingDINO && pip install -e. && cd .. && cd segment_anything && pip install -e. && cd ..')
3
+ import cv2
4
+ import gradio as gr
5
+ from PIL import Image
6
+ import numpy as np
7
+ from sam_extension.utils import add_points_tag, add_boxes_tag, mask2greyimg
8
+ from sam_extension.pipeline import SAMEncoderPipeline, SAMDecoderPipeline, GroundingDinoPipeline
9
+ point_coords = []
10
+ point_labels = []
11
+ boxes = []
12
+ boxes_point = []
13
+ texts = []
14
+ sam_encoder_pipeline = None
15
+ sam_decoder_pipeline = None
16
+ result_list = []
17
+ result_index_list = []
18
+ mask_result_list = []
19
+ mask_result_index_list = []
20
+ def resize(image, des_max=512):
21
+ h, w = image.shape[:2]
22
+ if h >= w:
23
+ new_h = des_max
24
+ new_w = int(des_max * w / h)
25
+ else:
26
+ new_w = des_max
27
+ new_h = int(des_max * h / w)
28
+ return cv2.resize(image, (new_w, new_h))
29
+ def show_prompt(img, prompt_mode, pos_point, evt: gr.SelectData): # SelectData is a subclass of EventData
30
+ global point_coords, point_labels, boxes_point, boxes
31
+ if prompt_mode == 'point':
32
+ point_coords.append([evt.index[0], evt.index[1]])
33
+ point_labels.append(1 if pos_point else 0)
34
+ result_img = add_points_tag(img, np.array(point_labels), np.array(point_coords))
35
+ elif prompt_mode == 'box':
36
+ boxes_point.append(evt.index[0])
37
+ boxes_point.append(evt.index[1])
38
+ if len(boxes_point) == 4:
39
+ boxes.append(boxes_point)
40
+ boxes_point = []
41
+ result_img = add_boxes_tag(img, np.array(boxes))
42
+ else:
43
+ result_img = img
44
+ return result_img, point_coords, point_labels, boxes_point, boxes
45
+
46
+ def reset_points(img):
47
+ global point_coords, point_labels
48
+ point_coords = []
49
+ point_labels = []
50
+ return img, point_coords, point_labels
51
+
52
+
53
+ def reset_boxes(img):
54
+ global boxes_point, boxes
55
+ boxes_point = []
56
+ boxes = []
57
+ return img, boxes_point, boxes
58
+
59
+ def load_sam(sam_ckpt_path, sam_version):
60
+ global sam_encoder_pipeline, sam_decoder_pipeline
61
+ sam_encoder_pipeline = SAMEncoderPipeline.from_pretrained(ckpt_path=sam_ckpt_path, sam_version=sam_version, device='cpu')
62
+ sam_decoder_pipeline = SAMDecoderPipeline.from_pretrained(ckpt_path=sam_ckpt_path, sam_version=sam_version, device='cpu')
63
+ return 'sam loaded!'
64
+
65
+
66
+ def generate_mask(img, prompt_mode, text_prompt):
67
+ global result_list, mask_result_list, result_index_list, mask_result_index_list
68
+ image = Image.fromarray(img)
69
+ img_size = sam_decoder_pipeline.img_size
70
+ des_img = image.resize((img_size, img_size))
71
+ sam_encoder_output = sam_encoder_pipeline(des_img)
72
+ if prompt_mode == 'point':
73
+ point_coords_ = np.array(point_coords)
74
+ point_labels_ = np.array(point_labels)
75
+ boxes_ = None
76
+ texts_ = None
77
+ grounding_dino_pipeline = None
78
+ elif prompt_mode == 'box':
79
+ point_coords_ = None
80
+ point_labels_ = None
81
+ boxes_ = np.array(boxes)
82
+ texts_ = None
83
+ grounding_dino_pipeline = None
84
+ else:
85
+ point_coords_ = None
86
+ point_labels_ = None
87
+ boxes_ = None
88
+ texts_ = text_prompt.split(',')
89
+ grounding_dino_pipeline = GroundingDinoPipeline.from_pretrained(
90
+ 'GroundingDINO/groundingdino/config/GroundingDINO_SwinT_OGC.py',
91
+ 'weights/groundingdino/groundingdino_swint_ogc.pth',
92
+ device='cpu')
93
+ result_list, mask_result_list, masks_list = sam_decoder_pipeline.visualize_results(
94
+ image,
95
+ des_img,
96
+ sam_encoder_output,
97
+ point_coords=point_coords_,
98
+ point_labels=point_labels_,
99
+ boxes=boxes_,
100
+ texts=texts_,
101
+ grounding_dino_pipeline=grounding_dino_pipeline,
102
+ multimask_output=True,
103
+ visualize_promts=True,
104
+ pil=False)
105
+ # result_index_list = [f'result_{i}' for i in range(len(result_list))]
106
+ # mask_result_index_list = [f'mask_result_{i}' for i in range(len(mask_result_list))]
107
+ return 'mask generated!', f'result_num : {len(result_list)}', f'mask_result_num : {len(masks_list)}'
108
+ # mask_grey_result_list = mask2greyimg(masks_list, False)
109
+
110
+
111
+ def show_result(result_index):
112
+ return result_list[int(result_index)]
113
+
114
+
115
+ def show_mask_result(mask_result_index):
116
+ return mask_result_list[int(mask_result_index)]
117
+
118
+
119
+ with gr.Blocks() as demo:
120
+ with gr.Row():
121
+ img = gr.Image(None, width=400, height=400, label='input_image', type='numpy')
122
+ result_img = gr.Image(None, width=400, height=400, label='output_image', type='numpy')
123
+ with gr.Row():
124
+ pos_point = gr.Checkbox(value=True, label='pos_point')
125
+ prompt_mode = gr.Dropdown(choices=['point', 'box', 'text'], value='point', label='prompt_mode')
126
+ with gr.Row():
127
+ point_coords_text = gr.Textbox(value=str(point_coords), interactive=True, label='point_coords')
128
+ point_labels_text = gr.Textbox(value=str(point_labels), interactive=True, label='point_labels')
129
+ reset_points_bu = gr.Button(value='reset_points')
130
+ reset_points_bu.click(fn=reset_points, inputs=[img], outputs=[result_img, point_coords_text, point_labels_text])
131
+ with gr.Row():
132
+ boxes_point_text = gr.Textbox(value=str(boxes_point), interactive=True, label='boxes_point')
133
+ boxes_text = gr.Textbox(value=str(boxes), interactive=True, label='boxes')
134
+ reset_boxes_bu = gr.Button(value='reset_boxes')
135
+ reset_boxes_bu.click(fn=reset_boxes, inputs=[img], outputs=[result_img, boxes_point_text, boxes_text])
136
+ with gr.Row():
137
+ text_prompt = gr.Textbox(value='', interactive=True, label='text_prompt')
138
+ with gr.Row():
139
+ sam_ckpt_path = gr.Dropdown(choices=['weights/sam/mobile_sam.pt'],
140
+ value='weights/sam/mobile_sam.pt',
141
+ label='SAM ckpt_path')
142
+ sam_version = gr.Dropdown(choices=['mobile_sam'],
143
+ value='mobile_sam',
144
+ label='SAM version')
145
+ load_sam_bu = gr.Button(value='load SAM')
146
+ sam_load_text = gr.Textbox(value='', interactive=True, label='sam_load')
147
+ load_sam_bu.click(fn=load_sam, inputs=[sam_ckpt_path, sam_version], outputs=sam_load_text)
148
+ with gr.Row():
149
+ result_num_text = gr.Textbox(value='', interactive=True, label='result_num')
150
+ result_index = gr.Number(value=0, label='result_index')
151
+ show_result_bu = gr.Button(value='show_result')
152
+ show_result_bu.click(fn=show_result, inputs=[result_index], outputs=[result_img])
153
+ with gr.Row():
154
+ mask_result_num_text = gr.Textbox(value='', interactive=True, label='mask_result_num')
155
+ mask_result_index = gr.Number(value=0, label='mask_result_index')
156
+ show_mask_result_bu = gr.Button(value='show_mask_result')
157
+ show_mask_result_bu.click(fn=show_mask_result, inputs=[mask_result_index], outputs=[result_img])
158
+ with gr.Row():
159
+ generate_masks_bu = gr.Button(value='SAM generate masks')
160
+ sam_text = gr.Textbox(value='', interactive=True, label='SAM')
161
+ generate_masks_bu.click(fn=generate_mask, inputs=[img, prompt_mode, text_prompt], outputs=[sam_text, result_num_text, mask_result_num_text])
162
+ img.select(show_prompt, [img, prompt_mode, pos_point], [result_img, point_coords_text, point_labels_text, boxes_point_text, boxes_text])
163
+ if __name__ == '__main__':
164
+ demo.launch()